Update app.py
Browse files
app.py
CHANGED
@@ -77,6 +77,56 @@ pd.DataFrame({"doc_note": docs}).to_csv("doc_notes.tsv", sep="\t", index=False)
|
|
77 |
pd.DataFrame({"soap_note": soaps}).to_csv("ground_truth_soap.tsv", sep="\t", index=False)
|
78 |
print("✅ Saved doc_notes.tsv & ground_truth_soap.tsv")
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# 3) Blank Gradio UI placeholder
|
81 |
def noop():
|
82 |
return "Data generated — check TSV files in the repo."
|
|
|
77 |
pd.DataFrame({"soap_note": soaps}).to_csv("ground_truth_soap.tsv", sep="\t", index=False)
|
78 |
print("✅ Saved doc_notes.tsv & ground_truth_soap.tsv")
|
79 |
|
80 |
+
# Colab/Kaggle/Space Cell: Split, infer on train (70), infer on test (30), and save files
|
81 |
+
|
82 |
+
import os
|
83 |
+
import pandas as pd
|
84 |
+
from sklearn.model_selection import train_test_split
|
85 |
+
|
86 |
+
# Make outputs directory
|
87 |
+
os.makedirs("outputs", exist_ok=True)
|
88 |
+
|
89 |
+
# 1) Load generated notes and ground truths
|
90 |
+
docs = pd.read_csv("doc_notes.tsv", sep="\t") # has column 'doc_note'
|
91 |
+
gts = pd.read_csv("ground_truth_soap.tsv", sep="\t") # has column 'soap_note'
|
92 |
+
|
93 |
+
full = pd.DataFrame({
|
94 |
+
"doc_note": docs["doc_note"],
|
95 |
+
"ground_truth_soap": gts["soap_note"]
|
96 |
+
})
|
97 |
+
|
98 |
+
# 2) Split 70% train / 30% test
|
99 |
+
train_df, test_df = train_test_split(full, test_size=0.3, random_state=42)
|
100 |
+
|
101 |
+
# 3) Run inference on the 70‑row train split and save inference.tsv
|
102 |
+
train_preds = []
|
103 |
+
for idx, row in train_df.reset_index(drop=True).iterrows():
|
104 |
+
pred = generate_soap_note(row["doc_note"])
|
105 |
+
train_preds.append(pred)
|
106 |
+
|
107 |
+
inference_df = train_df.reset_index(drop=True).copy()
|
108 |
+
inference_df["id"] = inference_df.index + 1
|
109 |
+
inference_df["predicted_soap"] = train_preds
|
110 |
+
inference_df = inference_df[["id","ground_truth_soap","predicted_soap"]]
|
111 |
+
inference_df.to_csv("outputs/inference.tsv", sep="\t", index=False)
|
112 |
+
|
113 |
+
# 4) Run inference on the 30‑row test split and save eval.csv
|
114 |
+
test_preds = []
|
115 |
+
for idx, row in test_df.reset_index(drop=True).iterrows():
|
116 |
+
pred = generate_soap_note(row["doc_note"])
|
117 |
+
test_preds.append(pred)
|
118 |
+
|
119 |
+
eval_df = pd.DataFrame({
|
120 |
+
"id": range(1, len(test_preds) + 1),
|
121 |
+
"predicted_soap": test_preds
|
122 |
+
})
|
123 |
+
eval_df.to_csv("outputs/eval.csv", index=False)
|
124 |
+
|
125 |
+
print("✅ Saved:")
|
126 |
+
print(" outputs/inference.tsv (70 rows: id, ground_truth_soap, predicted_soap)")
|
127 |
+
print(" outputs/eval.csv (30 rows: id, predicted_soap)")
|
128 |
+
|
129 |
+
|
130 |
# 3) Blank Gradio UI placeholder
|
131 |
def noop():
|
132 |
return "Data generated — check TSV files in the repo."
|