File size: 12,586 Bytes
918e8a0 28a6a8a 8acfda2 28a6a8a 918e8a0 365d0f1 918e8a0 365d0f1 918e8a0 365d0f1 918e8a0 28a6a8a 918e8a0 8acfda2 918e8a0 28a6a8a 918e8a0 8acfda2 918e8a0 28a6a8a 8acfda2 7aa5b58 918e8a0 42cf75c 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 8acfda2 918e8a0 28a6a8a 918e8a0 28a6a8a 8acfda2 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a 918e8a0 28a6a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import sys
sys.path.append('./')
import gradio as gr
import random
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from models import iresnet
from sixdrepnet.model import SixDRepNet
import pixel_generator.vec2face.model_vec2face as model_vec2face
MAX_SEED = np.iinfo(np.int32).max
import torch
from time import time
device = "cuda"
def clear_image():
return None
def clear_generation_time():
return ""
def generating():
return "Generating images..."
def done():
return "Done!"
def sample_nearby_vectors(base_vector, epsilons=[0.3, 0.5, 0.7], percentages=[0.4, 0.4, 0.2]):
row, col = base_vector.shape
norm = torch.norm(base_vector, 2, 1, True)
diff = []
for i, eps in enumerate(epsilons):
diff.append(np.random.normal(0, eps, (int(row * percentages[i]), col)))
diff = np.vstack(diff)
np.random.shuffle(diff)
diff = torch.tensor(diff)
generated_samples = base_vector + diff
generated_samples = generated_samples / torch.norm(generated_samples, 2, 1, True) * norm
return generated_samples
def initialize_models():
pose_model_weights = hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/6DRepNet_300W_LP_AFLW2000.pth", local_dir="./")
id_model_weights = hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/arcface-r100-glint360k.pth", local_dir="./")
quality_model_weights = hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/magface-r100-glint360k.pth", local_dir="./")
generator_weights = hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/vec2face_generator.pth", local_dir="./")
generator = model_vec2face.__dict__["vec2face_vit_base_patch16"](mask_ratio_mu=0.15, mask_ratio_std=0.25,
mask_ratio_min=0.1, mask_ratio_max=0.5,
use_rep=True,
rep_dim=512,
rep_drop_prob=0.,
use_class_label=False)
generator = generator.to(device)
checkpoint = torch.load(generator_weights, map_location=device)
generator.load_state_dict(checkpoint['model_vec2face'])
generator.eval()
id_model = iresnet("100", fp16=True).to(device)
id_model.load_state_dict(torch.load(id_model_weights, map_location=device))
id_model.eval()
quality_model = iresnet("100", fp16=True).to(device)
quality_model.load_state_dict(torch.load(quality_model_weights, map_location=device))
quality_model.eval()
pose_model = SixDRepNet(backbone_name='RepVGG-B1g2',
backbone_file='',
deploy=True,
pretrained=False
).to(device)
pose_model.load_state_dict(torch.load(pose_model_weights))
pose_model.eval()
return generator, id_model, pose_model, quality_model
def image_generation(input_image, quality, use_target_pose, pose, dimension, progress=gr.Progress()):
generator, id_model, pose_model, quality_model = initialize_models()
generated_images = []
if input_image is None:
feature = np.random.normal(0, 1.0, (1, 512))
else:
input_image = np.transpose(input_image, (2, 0, 1))
input_image = torch.from_numpy(input_image).unsqueeze(0).float().to(device)
input_image.div_(255).sub_(0.5).div_(0.5)
feature = id_model(input_image).clone().detach().cpu().numpy()
if not use_target_pose:
features = []
norm = np.linalg.norm(feature, 2, 1, True)
for i in progress.tqdm(np.arange(0, 4.8, 2), desc="Generating images"):
updated_feature = feature
updated_feature[0][dimension] = feature[0][dimension] + i
updated_feature = updated_feature / np.linalg.norm(updated_feature, 2, 1, True) * norm
features.append(updated_feature)
features = torch.tensor(np.vstack(features)).float().to(device)
if quality > 25:
images, _ = generator.gen_image(features, quality_model, id_model, q_target=quality)
else:
_, _, images, *_ = generator(features)
else:
features = torch.repeat_interleave(torch.tensor(feature), 3, dim=0)
features = sample_nearby_vectors(features, [0.7], [1]).float().to(device)
if quality > 25 or pose > 20:
images, _ = generator.gen_image(features, quality_model, id_model, pose_model=pose_model,
q_target=quality, pose=pose, class_rep=features)
else:
_, _, images, *_ = generator(features)
images = ((images.permute(0, 2, 3, 1).clip(-1, 1).detach().cpu().numpy() + 1) / 2 * 255).astype(np.uint8)
for image in progress.tqdm(images, desc="Processing images"):
generated_images.append(Image.fromarray(image))
return generated_images
def process_input(image_input, num1, num2, num3, num4, random_seed, target_quality, use_target_pose, target_pose, progress=gr.Progress()):
# Ensure all dimension numbers are within [0, 512)
num1, num2, num3, num4 = [max(0, min(int(n), 511)) for n in [num1, num2, num3, num4]]
# Use the provided random seed
random.seed(random_seed)
np.random.seed(random_seed)
if image_input is None:
input_data = None
else:
# Process the uploaded image
input_data = Image.open(image_input)
input_data = np.array(input_data.resize((112, 112)))
generated_images = image_generation(input_data, target_quality, use_target_pose, target_pose, [num1, num2, num3, num4], progress)
return generated_images
def select_image(value, images):
# Convert the float value (0 to 4) to an integer index (0 to 9)
index = int(value / 2)
return images[index]
def toggle_inputs(use_pose):
return [
gr.update(visible=use_pose, interactive=use_pose), # target_pose
gr.update(interactive=not use_pose), # num1
gr.update(interactive=not use_pose), # num2
gr.update(interactive=not use_pose), # num3
gr.update(interactive=not use_pose), # num4
]
# 4. Since the demo is CPU-based, higher quality and larger pose need longer time to run.
def main():
with gr.Blocks() as demo:
title = r"""
<h1 align="center">Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors</h1>
"""
description = r"""
<b>Official π€ Gradio demo</b> for <a href='https://github.com/HaiyuWu/vec2face' target='_blank'><b>Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors</b></a>.<br>
How to use:<br>
1. Upload an image with a cropped face image or directly click <b>Submit</b> button, three images will be shown on the right.
2. You can control the image quality, image pose, and modify the values in the target dimensions to change the output images.
3. The output results will shown three results of dimension modification or pose images.
4. Enjoy! π
"""
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
image_file = gr.Image(label="Upload an image (optional)", type="filepath")
gr.Markdown("""
## Dimension Modification
Enter the values for the dimensions you want to modify (0-511).
""")
with gr.Row():
num1 = gr.Number(label="Dimension 1", value=0, minimum=0, maximum=511, step=1)
num2 = gr.Number(label="Dimension 2", value=50, minimum=0, maximum=511, step=1)
num3 = gr.Number(label="Dimension 3", value=100, minimum=0, maximum=511, step=1)
num4 = gr.Number(label="Dimension 4", value=200, minimum=0, maximum=511, step=1)
random_seed = gr.Number(label="Random Seed", value=42, minimum=0, maximum=MAX_SEED, step=1)
target_quality = gr.Slider(label="Minimum Quality", minimum=22, maximum=35, step=1, value=24)
with gr.Row():
use_target_pose = gr.Checkbox(label="Use Target Pose")
target_pose = gr.Slider(label="Target Pose", value=0, minimum=0, maximum=90, step=1, visible=False)
submit = gr.Button("Submit", variant="primary")
gr.Markdown("""
## Usage tips of Vec2Face
- Directly clicking "Submit" button will give you results from a randomly sampled vector.
- If you want to modify more dimensions, please write your own code. Code snippets in [Vec2Face repo](https://github.com/HaiyuWu/vec2face) might be helpful.
- If you want to create extreme pose image (e.g., >70), please do not set image quality larger than 27.
- <span style="color: red;">!</span> <span style="color: red;">!</span> <span style="color: red;">!</span> **Due to the limitation of SixDRepNet (pose estimator), pose editing results might be corrupted/incorrect. For better performance, you can integrade other pose estimators.** <span style="color: red;">!</span> <span style="color: red;">!</span> <span style="color: red;">!</span>
- For better experience, we suggest you to run code on a GPU machine.
""")
with gr.Column():
gallery = gr.Image(label="Generated Image")
generation_time = gr.Textbox(label="Generation Status")
incremental_value_slider = gr.Slider(
label="Result of dimension modification or results of pose images",
minimum=0, maximum=4, step=2, value=0
)
gr.Markdown("""
- These values are added to the dimensions (before normalization), **please ignore it if pose editing is on**.
""")
use_target_pose.change(
fn=toggle_inputs,
inputs=[use_target_pose],
outputs=[target_pose, num1, num2, num3, num4]
)
generated_images = gr.State([])
submit.click(
fn=clear_image,
inputs=[],
outputs=[gallery]
).then(
fn=generating,
inputs=[],
outputs=[generation_time]
).then(
fn=process_input,
inputs=[image_file, num1, num2, num3, num4, random_seed, target_quality, use_target_pose, target_pose],
outputs=[generated_images]
).then(
fn=done,
inputs=[],
outputs=[generation_time]
).then(
fn=select_image,
inputs=[incremental_value_slider, generated_images],
outputs=[gallery]
)
# submit.click(
# fn=process_input,
# inputs=[image_file, num1, num2, num3, num4, random_seed, target_quality, use_target_pose, target_pose],
# outputs=[generated_images]
# ).then(
# fn=select_image,
# inputs=[incremental_value_slider, generated_images],
# outputs=[gallery]
# )
incremental_value_slider.change(
fn=select_image,
inputs=[incremental_value_slider, generated_images],
outputs=[gallery]
)
article = r"""
---
π **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wu2024vec2face,
title={Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors},
author={Wu, Haiyu and Singh, Jaskirat and Tian, Sicong and Zheng, Liang and Bowyer, Kevin W.},
year={2024}
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
"""
gr.Markdown(article)
demo.launch(share=True)
if __name__ == "__main__":
main()
|