File size: 3,479 Bytes
918e8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch.nn as nn
import torch

####################################ViT-VQGAN########################################
# https://github.com/lucidrains/parti-pytorch/blob/main/parti_pytorch/vit_vqgan.py#L171
#####################################################################################
def default(val, d):
    return val if exists(val) else d

def exists(val):
    return val is not None

def leaky_relu(p = 0.1):
    return nn.LeakyReLU(0.1)

class CrossEmbedLayer(nn.Module):
    def __init__(

        self,

        dim_in,

        kernel_sizes,

        dim_out = None,

        stride = 2

    ):
        super().__init__()
        assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
        dim_out = default(dim_out, dim_in)

        kernel_sizes = sorted(kernel_sizes)
        num_scales = len(kernel_sizes)

        # calculate the dimension at each scale
        dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
        dim_scales = [*dim_scales, dim_out - sum(dim_scales)]

        self.convs = nn.ModuleList([])
        for kernel, dim_scale in zip(kernel_sizes, dim_scales):
            self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))

    def forward(self, x):
        fmaps = tuple(map(lambda conv: conv(x), self.convs))
        return torch.cat(fmaps, dim = 1)

class Block(nn.Module):
    def __init__(

        self,

        dim,

        dim_out,

        groups = 8

    ):
        super().__init__()
        self.groupnorm = nn.GroupNorm(groups, dim)
        self.activation = leaky_relu()
        self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)

    def forward(self, x, scale_shift = None):
        x = self.groupnorm(x)
        x = self.activation(x)
        return self.project(x)

class ResnetBlock(nn.Module):
    def __init__(

        self,

        dim,

        dim_out = None,

        *,

        groups = 8

    ):
        super().__init__()
        dim_out = default(dim_out, dim)
        self.block = Block(dim, dim_out, groups = groups)
        self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()

    def forward(self, x):
        h = self.block(x)
        return h + self.res_conv(x)


class Discriminator(nn.Module):
    def __init__(

        self,

        dims,

        channels = 3,

        groups = 8,

        init_kernel_size = 5,

        cross_embed_kernel_sizes = (3, 7, 15)

    ):
        super().__init__()
        init_dim, *_, final_dim = dims
        dim_pairs = zip(dims[:-1], dims[1:])

        self.layers = nn.ModuleList([nn.Sequential(
            CrossEmbedLayer(channels, cross_embed_kernel_sizes, init_dim, stride = 1),
            leaky_relu()
        )])

        for dim_in, dim_out in dim_pairs:
            self.layers.append(nn.Sequential(
                nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1),
                leaky_relu(),
                nn.GroupNorm(groups, dim_out),
                ResnetBlock(dim_out, dim_out),
            ))

        self.to_logits = nn.Sequential( # return 5 x 5, for PatchGAN-esque training
            nn.Conv2d(final_dim, final_dim, 1),
            leaky_relu(),
            nn.Conv2d(final_dim, 1, 4)
        )

    def forward(self, x):
        for net in self.layers:
            x = net(x)
        return self.to_logits(x)