File size: 16,139 Bytes
918e8a0 e1eebbb 918e8a0 e1eebbb 918e8a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
from functools import partial
import torch
import torch.nn as nn
import torch.optim as optim
from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp
from omegaconf import OmegaConf
import numpy as np
import scipy.stats as stats
from pixel_generator.vec2face.im_decoder import Decoder
from sixdrepnet.model import utils
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
attn = attn - torch.max(attn, dim=-1, keepdim=True)[0]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
with torch.cuda.amp.autocast(enabled=False):
if return_attention:
_, attn = self.attn(self.norm1(x))
return attn
else:
y, _ = self.attn(self.norm1(x))
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LabelSmoothingCrossEntropy(nn.Module):
""" NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1):
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, hidden_size, max_position_embeddings, dropout=0.1):
super().__init__()
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))
torch.nn.init.normal_(self.position_embeddings.weight, std=.02)
def forward(
self, input_ids
):
input_shape = input_ids.size()
seq_length = input_shape[1]
position_ids = self.position_ids[:, :seq_length]
position_embeddings = self.position_embeddings(position_ids)
embeddings = input_ids + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MaskedGenerativeEncoderViT(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=112, patch_size=7, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25,
use_rep=True, rep_dim=512,
rep_drop_prob=0.0,
use_class_label=False):
super().__init__()
assert not (use_rep and use_class_label)
# --------------------------------------------------------------------------
vqgan_config = OmegaConf.load('configs/vec2face/vqgan.yaml').model
self.token_emb = BertEmbeddings(hidden_size=embed_dim,
max_position_embeddings=49 + 1,
dropout=0.1)
self.use_rep = use_rep
self.use_class_label = use_class_label
if self.use_rep:
print("Use representation as condition!")
self.latent_prior_proj_f = nn.Linear(rep_dim, embed_dim, bias=True)
# CFG config
self.rep_drop_prob = rep_drop_prob
self.feature_token = nn.Linear(1, 49, bias=True)
self.center_token = nn.Linear(embed_dim, 49, bias=True)
self.im_decoder = Decoder(**vqgan_config.params.ddconfig)
self.im_decoder_proj = nn.Linear(embed_dim, vqgan_config.params.ddconfig.z_channels)
# Vec2Face variant masking ratio
self.mask_ratio_min = mask_ratio_min
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std,
(mask_ratio_max - mask_ratio_mu) / mask_ratio_std,
loc=mask_ratio_mu, scale=mask_ratio_std)
# --------------------------------------------------------------------------
# Vec2Face encoder specifics
dropout_rate = 0.1
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# Vec2Face decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.pad_with_cls_token = True
self.decoder_pos_embed_learned = nn.Parameter(
torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=True) # learnable pos embedding
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
# --------------------------------------------------------------------------
self.initialize_weights()
def initialize_weights(self):
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
torch.nn.init.xavier_uniform_(self.feature_token.weight)
torch.nn.init.xavier_uniform_(self.center_token.weight)
torch.nn.init.xavier_uniform_(self.latent_prior_proj_f.weight)
torch.nn.init.xavier_uniform_(self.decoder_embed.weight)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, rep):
# expand to feature map
device = rep.device
encode_feature = self.latent_prior_proj_f(rep)
feature_token = self.feature_token(encode_feature.unsqueeze(-1)).permute(0, 2, 1)
gt_indices = torch.cat((encode_feature.unsqueeze(1), feature_token), dim=1).clone().detach()
# masked row indices
bsz, seq_len, _ = feature_token.size()
mask_ratio_min = self.mask_ratio_min
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min))
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
# it is possible that two elements of the noise is the same, so do a while loop to avoid it
while True:
noise = torch.rand(bsz, seq_len, device=rep.device) # noise in [0, 1]
sorted_noise, _ = torch.sort(noise, dim=1) # ascend: small is remove, large is keep
cutoff_drop = sorted_noise[:, num_dropped_tokens - 1:num_dropped_tokens]
cutoff_mask = sorted_noise[:, num_masked_tokens - 1:num_masked_tokens]
token_drop_mask = (noise <= cutoff_drop).float()
token_all_mask = (noise <= cutoff_mask).float()
if token_drop_mask.sum() == bsz * num_dropped_tokens and \
token_all_mask.sum() == bsz * num_masked_tokens:
break
else:
print("Rerandom the noise!")
token_all_mask_bool = token_all_mask.bool()
encode_feature_expanded = encode_feature.unsqueeze(1).expand(-1, feature_token.shape[1], -1)
feature_token[token_all_mask_bool] = encode_feature_expanded[token_all_mask_bool]
# concatenate with image feature
feature_token = torch.cat([encode_feature.unsqueeze(1), feature_token], dim=1)
token_drop_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_drop_mask], dim=1)
token_all_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_all_mask], dim=1)
# bert embedding
input_embeddings = self.token_emb(feature_token)
bsz, seq_len, emb_dim = input_embeddings.shape
# dropping
token_keep_mask = 1 - token_drop_mask
input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim)
# apply Transformer blocks
x = input_embeddings_after_drop
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x, gt_indices, token_drop_mask, token_all_mask
def forward_decoder(self, x, token_drop_mask, token_all_mask):
# embed incomplete feature map
x = self.decoder_embed(x)
# fill masked positions with image feature
mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1)
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad)
# add pos embed
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
logits = self.decoder_norm(x)
bsz, _, emb_dim = logits.shape
# an image decoder
decoder_proj = self.im_decoder_proj(logits[:, 1:, :].reshape(bsz, 7, 7, emb_dim)).permute(0, 3, 1, 2)
return decoder_proj, logits
def get_last_layer(self):
return self.im_decoder.conv_out.weight
def forward(self, rep):
last_layer = self.get_last_layer()
latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(rep)
decoder_proj, logits = self.forward_decoder(latent, token_drop_mask, token_all_mask)
image = self.im_decoder(decoder_proj)
return gt_indices, logits, image, last_layer, token_all_mask
def gen_image(self, rep, quality_model, fr_model, pose_model=None, age_model=None, class_rep=None,
num_iter=1, lr=1e-1, q_target=27, pose=60):
rep_copy = rep.clone().detach().requires_grad_(True)
optm = optim.Adam([rep_copy], lr=lr)
i = 0
while i < num_iter:
latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy)
decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask)
image = self.im_decoder(decoder_proj).clip(max=1., min=-1.)
# feature comparison
out_feature = fr_model(image)
if class_rep is None:
id_loss = torch.mean(1 - torch.cosine_similarity(out_feature, rep))
else:
distance = 1 - torch.cosine_similarity(out_feature, class_rep)
id_loss = torch.mean(torch.where(distance > 0., distance, torch.zeros_like(distance)))
quality = quality_model(image)
norm = torch.norm(quality, 2, 1, True)
q_loss = torch.where(norm < q_target, q_target - norm, torch.zeros_like(norm))
pose_loss = 0
if pose_model is not None:
# sixdrepnet
bgr_img = image[:, [2, 1, 0], :, :]
pose_info = pose_model(((bgr_img + 1) / 2))
pose_info = utils.compute_euler_angles_from_rotation_matrices(
pose_info) * 180 / np.pi
yaw_loss = torch.abs(pose - torch.abs(pose_info[:, 1].clip(min=-90, max=90)))
pose_loss = torch.mean(yaw_loss)
q_loss = torch.mean(q_loss)
if pose_loss > 5 or id_loss > 0.3 or q_loss > 1:
i -= 1
loss = id_loss * 100 + q_loss + pose_loss
optm.zero_grad()
loss.backward(retain_graph=True)
optm.step()
i += 1
latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy)
decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask)
image = self.im_decoder(decoder_proj).clip(max=1., min=-1.)
return image, rep_copy.detach()
def vec2face_vit_base_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vec2face_vit_large_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vec2face_vit_huge_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=1280, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
|