File size: 16,139 Bytes
918e8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eebbb
918e8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
e1eebbb
918e8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from functools import partial
import torch
import torch.nn as nn
import torch.optim as optim
from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp
from omegaconf import OmegaConf
import numpy as np
import scipy.stats as stats
from pixel_generator.vec2face.im_decoder import Decoder
from sixdrepnet.model import utils


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
        attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
        attn = attn - torch.max(attn, dim=-1, keepdim=True)[0]
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x, attn


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, return_attention=False):
        with torch.cuda.amp.autocast(enabled=False):
            if return_attention:
                _, attn = self.attn(self.norm1(x))
                return attn
            else:
                y, _ = self.attn(self.norm1(x))
                x = x + self.drop_path(y)
                x = x + self.drop_path(self.mlp(self.norm2(x)))
            return x


class LabelSmoothingCrossEntropy(nn.Module):
    """ NLL loss with label smoothing.
    """

    def __init__(self, smoothing=0.1):
        super(LabelSmoothingCrossEntropy, self).__init__()
        assert smoothing < 1.0
        self.smoothing = smoothing
        self.confidence = 1. - smoothing

    def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        logprobs = torch.nn.functional.log_softmax(x, dim=-1)
        nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
        nll_loss = nll_loss.squeeze(1)
        smooth_loss = -logprobs.mean(dim=-1)
        loss = self.confidence * nll_loss + self.smoothing * smooth_loss
        return loss


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, hidden_size, max_position_embeddings, dropout=0.1):
        super().__init__()
        self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
        self.dropout = nn.Dropout(dropout)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))

        torch.nn.init.normal_(self.position_embeddings.weight, std=.02)

    def forward(
            self, input_ids
    ):
        input_shape = input_ids.size()

        seq_length = input_shape[1]

        position_ids = self.position_ids[:, :seq_length]

        position_embeddings = self.position_embeddings(position_ids)
        embeddings = input_ids + position_embeddings

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class MaskedGenerativeEncoderViT(nn.Module):
    """ Masked Autoencoder with VisionTransformer backbone
    """

    def __init__(self, img_size=112, patch_size=7, in_chans=3,
                 embed_dim=1024, depth=24, num_heads=16,
                 decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
                 mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
                 mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25,
                 use_rep=True, rep_dim=512,
                 rep_drop_prob=0.0,
                 use_class_label=False):
        super().__init__()
        assert not (use_rep and use_class_label)

        # --------------------------------------------------------------------------
        vqgan_config = OmegaConf.load('configs/vec2face/vqgan.yaml').model
        self.token_emb = BertEmbeddings(hidden_size=embed_dim,
                                        max_position_embeddings=49 + 1,
                                        dropout=0.1)
        self.use_rep = use_rep
        self.use_class_label = use_class_label
        if self.use_rep:
            print("Use representation as condition!")
            self.latent_prior_proj_f = nn.Linear(rep_dim, embed_dim, bias=True)
        # CFG config
        self.rep_drop_prob = rep_drop_prob
        self.feature_token = nn.Linear(1, 49, bias=True)
        self.center_token = nn.Linear(embed_dim, 49, bias=True)
        self.im_decoder = Decoder(**vqgan_config.params.ddconfig)
        self.im_decoder_proj = nn.Linear(embed_dim, vqgan_config.params.ddconfig.z_channels)

        # Vec2Face variant masking ratio
        self.mask_ratio_min = mask_ratio_min
        self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std,
                                                    (mask_ratio_max - mask_ratio_mu) / mask_ratio_std,
                                                    loc=mask_ratio_mu, scale=mask_ratio_std)
        # --------------------------------------------------------------------------
        # Vec2Face encoder specifics
        dropout_rate = 0.1
        self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
        num_patches = self.patch_embed.num_patches

        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
                  drop=dropout_rate, attn_drop=dropout_rate)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        # --------------------------------------------------------------------------
        # Vec2Face decoder specifics
        self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
        self.pad_with_cls_token = True

        self.decoder_pos_embed_learned = nn.Parameter(
            torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=True)  # learnable pos embedding

        self.decoder_blocks = nn.ModuleList([
            Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
                  drop=dropout_rate, attn_drop=dropout_rate)
            for i in range(decoder_depth)])

        self.decoder_norm = norm_layer(decoder_embed_dim)
        # --------------------------------------------------------------------------
        self.initialize_weights()

    def initialize_weights(self):
        w = self.patch_embed.proj.weight.data
        torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
        torch.nn.init.xavier_uniform_(self.feature_token.weight)
        torch.nn.init.xavier_uniform_(self.center_token.weight)
        torch.nn.init.xavier_uniform_(self.latent_prior_proj_f.weight)
        torch.nn.init.xavier_uniform_(self.decoder_embed.weight)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            # we use xavier_uniform following official JAX ViT:
            torch.nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward_encoder(self, rep):
        # expand to feature map
        device = rep.device
        encode_feature = self.latent_prior_proj_f(rep)
        feature_token = self.feature_token(encode_feature.unsqueeze(-1)).permute(0, 2, 1)

        gt_indices = torch.cat((encode_feature.unsqueeze(1), feature_token), dim=1).clone().detach()

        # masked row indices
        bsz, seq_len, _ = feature_token.size()
        mask_ratio_min = self.mask_ratio_min
        mask_rate = self.mask_ratio_generator.rvs(1)[0]

        num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min))
        num_masked_tokens = int(np.ceil(seq_len * mask_rate))

        # it is possible that two elements of the noise is the same, so do a while loop to avoid it
        while True:
            noise = torch.rand(bsz, seq_len, device=rep.device)  # noise in [0, 1]
            sorted_noise, _ = torch.sort(noise, dim=1)  # ascend: small is remove, large is keep
            cutoff_drop = sorted_noise[:, num_dropped_tokens - 1:num_dropped_tokens]
            cutoff_mask = sorted_noise[:, num_masked_tokens - 1:num_masked_tokens]
            token_drop_mask = (noise <= cutoff_drop).float()
            token_all_mask = (noise <= cutoff_mask).float()
            if token_drop_mask.sum() == bsz * num_dropped_tokens and \
                    token_all_mask.sum() == bsz * num_masked_tokens:
                break
            else:
                print("Rerandom the noise!")
        token_all_mask_bool = token_all_mask.bool()
        encode_feature_expanded = encode_feature.unsqueeze(1).expand(-1, feature_token.shape[1], -1)
        feature_token[token_all_mask_bool] = encode_feature_expanded[token_all_mask_bool]

        # concatenate with image feature
        feature_token = torch.cat([encode_feature.unsqueeze(1), feature_token], dim=1)
        token_drop_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_drop_mask], dim=1)
        token_all_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_all_mask], dim=1)

        # bert embedding
        input_embeddings = self.token_emb(feature_token)

        bsz, seq_len, emb_dim = input_embeddings.shape

        # dropping
        token_keep_mask = 1 - token_drop_mask
        input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim)

        # apply Transformer blocks
        x = input_embeddings_after_drop
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)
        return x, gt_indices, token_drop_mask, token_all_mask

    def forward_decoder(self, x, token_drop_mask, token_all_mask):
        # embed incomplete feature map
        x = self.decoder_embed(x)
        # fill masked positions with image feature
        mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1)
        x_after_pad = mask_tokens.clone()
        x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
        x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad)
        # add pos embed
        x = x_after_pad + self.decoder_pos_embed_learned

        # apply Transformer blocks
        for blk in self.decoder_blocks:
            x = blk(x)

        logits = self.decoder_norm(x)
        bsz, _, emb_dim = logits.shape
        # an image decoder
        decoder_proj = self.im_decoder_proj(logits[:, 1:, :].reshape(bsz, 7, 7, emb_dim)).permute(0, 3, 1, 2)
        return decoder_proj, logits

    def get_last_layer(self):
        return self.im_decoder.conv_out.weight

    def forward(self, rep):
        last_layer = self.get_last_layer()
        latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(rep)
        decoder_proj, logits = self.forward_decoder(latent, token_drop_mask, token_all_mask)
        image = self.im_decoder(decoder_proj)

        return gt_indices, logits, image, last_layer, token_all_mask

    def gen_image(self, rep, quality_model, fr_model, pose_model=None, age_model=None, class_rep=None,
                  num_iter=1, lr=1e-1, q_target=27, pose=60):
        rep_copy = rep.clone().detach().requires_grad_(True)
        optm = optim.Adam([rep_copy], lr=lr)

        i = 0
        while i < num_iter:
            latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy)
            decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask)
            image = self.im_decoder(decoder_proj).clip(max=1., min=-1.)
            # feature comparison
            out_feature = fr_model(image)
            if class_rep is None:
                id_loss = torch.mean(1 - torch.cosine_similarity(out_feature, rep))
            else:
                distance = 1 - torch.cosine_similarity(out_feature, class_rep)
                id_loss = torch.mean(torch.where(distance > 0., distance, torch.zeros_like(distance)))
            quality = quality_model(image)
            norm = torch.norm(quality, 2, 1, True)
            q_loss = torch.where(norm < q_target, q_target - norm, torch.zeros_like(norm))

            pose_loss = 0
            if pose_model is not None:
                # sixdrepnet
                bgr_img = image[:, [2, 1, 0], :, :]
                pose_info = pose_model(((bgr_img + 1) / 2))
                pose_info = utils.compute_euler_angles_from_rotation_matrices(
                    pose_info) * 180 / np.pi
                yaw_loss = torch.abs(pose - torch.abs(pose_info[:, 1].clip(min=-90, max=90)))
                pose_loss = torch.mean(yaw_loss)
            q_loss = torch.mean(q_loss)
            if pose_loss > 5 or id_loss > 0.3 or q_loss > 1:
                i -= 1
            loss = id_loss * 100 + q_loss + pose_loss
            optm.zero_grad()
            loss.backward(retain_graph=True)
            optm.step()
            i += 1

        latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy)
        decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask)
        image = self.im_decoder(decoder_proj).clip(max=1., min=-1.)

        return image, rep_copy.detach()


def vec2face_vit_base_patch16(**kwargs):
    model = MaskedGenerativeEncoderViT(
        patch_size=16, embed_dim=768, depth=12, num_heads=12,
        decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model


def vec2face_vit_large_patch16(**kwargs):
    model = MaskedGenerativeEncoderViT(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model


def vec2face_vit_huge_patch16(**kwargs):
    model = MaskedGenerativeEncoderViT(
        patch_size=16, embed_dim=1280, depth=32, num_heads=16,
        decoder_embed_dim=1280, decoder_depth=8, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model