File size: 2,388 Bytes
918e8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import pytorch_lightning as pl

from pixel_generator.mage.taming.modules.diffusionmodules.model import Encoder, Decoder
from pixel_generator.mage.taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer


class VQModel(pl.LightningModule):
    def __init__(self,
                 ddconfig,
                 n_embed,
                 embed_dim,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 colorize_nlabels=None,
                 monitor=None,
                 remap=None,
                 sane_index_shape=False,  # tell vector quantizer to return indices as bhw
                 ):
        super().__init__()
        self.image_key = image_key
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)
        self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
                                        remap=remap, sane_index_shape=sane_index_shape)
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
        self.image_key = image_key
        if colorize_nlabels is not None:
            assert type(colorize_nlabels)==int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
        if monitor is not None:
            self.monitor = monitor

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")
        if "state_dict" in sd.keys():
            sd = sd["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        print("Strict load")
        self.load_state_dict(sd, strict=True)
        print(f"Restored from {path}")

    def encode(self, x):
        h = self.encoder(x)
        quant, emb_loss, info = self.quantize(h)
        return quant, emb_loss, info

    def decode(self, quant):
        dec = self.decoder(quant)
        return dec

    def decode_code(self, code_b):
        quant_b = self.quantize.embed_code(code_b)
        dec = self.decode(quant_b)
        return dec

    def forward(self, input):
        quant, diff, _ = self.encode(input)
        dec = self.decode(quant)
        return dec, diff