|
import torch.nn as nn
|
|
import torch
|
|
|
|
|
|
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def leaky_relu(p = 0.1):
|
|
return nn.LeakyReLU(0.1)
|
|
|
|
class CrossEmbedLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim_in,
|
|
kernel_sizes,
|
|
dim_out = None,
|
|
stride = 2
|
|
):
|
|
super().__init__()
|
|
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
|
|
dim_out = default(dim_out, dim_in)
|
|
|
|
kernel_sizes = sorted(kernel_sizes)
|
|
num_scales = len(kernel_sizes)
|
|
|
|
|
|
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
|
|
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
|
|
|
|
self.convs = nn.ModuleList([])
|
|
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
|
|
self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
|
|
|
|
def forward(self, x):
|
|
fmaps = tuple(map(lambda conv: conv(x), self.convs))
|
|
return torch.cat(fmaps, dim = 1)
|
|
|
|
class Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out,
|
|
groups = 8
|
|
):
|
|
super().__init__()
|
|
self.groupnorm = nn.GroupNorm(groups, dim)
|
|
self.activation = leaky_relu()
|
|
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
|
|
|
|
def forward(self, x, scale_shift = None):
|
|
x = self.groupnorm(x)
|
|
x = self.activation(x)
|
|
return self.project(x)
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out = None,
|
|
*,
|
|
groups = 8
|
|
):
|
|
super().__init__()
|
|
dim_out = default(dim_out, dim)
|
|
self.block = Block(dim, dim_out, groups = groups)
|
|
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
h = self.block(x)
|
|
return h + self.res_conv(x)
|
|
|
|
|
|
class Discriminator(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
channels = 3,
|
|
groups = 8,
|
|
init_kernel_size = 5,
|
|
cross_embed_kernel_sizes = (3, 7, 15)
|
|
):
|
|
super().__init__()
|
|
init_dim, *_, final_dim = dims
|
|
dim_pairs = zip(dims[:-1], dims[1:])
|
|
|
|
self.layers = nn.ModuleList([nn.Sequential(
|
|
CrossEmbedLayer(channels, cross_embed_kernel_sizes, init_dim, stride = 1),
|
|
leaky_relu()
|
|
)])
|
|
|
|
for dim_in, dim_out in dim_pairs:
|
|
self.layers.append(nn.Sequential(
|
|
nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1),
|
|
leaky_relu(),
|
|
nn.GroupNorm(groups, dim_out),
|
|
ResnetBlock(dim_out, dim_out),
|
|
))
|
|
|
|
self.to_logits = nn.Sequential(
|
|
nn.Conv2d(final_dim, final_dim, 1),
|
|
leaky_relu(),
|
|
nn.Conv2d(final_dim, 1, 4)
|
|
)
|
|
|
|
def forward(self, x):
|
|
for net in self.layers:
|
|
x = net(x)
|
|
return self.to_logits(x)
|
|
|