Haiyu Wu
vec2face demo
918e8a0
import torch.nn as nn
import torch
####################################ViT-VQGAN########################################
# https://github.com/lucidrains/parti-pytorch/blob/main/parti_pytorch/vit_vqgan.py#L171
#####################################################################################
def default(val, d):
return val if exists(val) else d
def exists(val):
return val is not None
def leaky_relu(p = 0.1):
return nn.LeakyReLU(0.1)
class CrossEmbedLayer(nn.Module):
def __init__(
self,
dim_in,
kernel_sizes,
dim_out = None,
stride = 2
):
super().__init__()
assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)])
dim_out = default(dim_out, dim_in)
kernel_sizes = sorted(kernel_sizes)
num_scales = len(kernel_sizes)
# calculate the dimension at each scale
dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)]
dim_scales = [*dim_scales, dim_out - sum(dim_scales)]
self.convs = nn.ModuleList([])
for kernel, dim_scale in zip(kernel_sizes, dim_scales):
self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2))
def forward(self, x):
fmaps = tuple(map(lambda conv: conv(x), self.convs))
return torch.cat(fmaps, dim = 1)
class Block(nn.Module):
def __init__(
self,
dim,
dim_out,
groups = 8
):
super().__init__()
self.groupnorm = nn.GroupNorm(groups, dim)
self.activation = leaky_relu()
self.project = nn.Conv2d(dim, dim_out, 3, padding = 1)
def forward(self, x, scale_shift = None):
x = self.groupnorm(x)
x = self.activation(x)
return self.project(x)
class ResnetBlock(nn.Module):
def __init__(
self,
dim,
dim_out = None,
*,
groups = 8
):
super().__init__()
dim_out = default(dim_out, dim)
self.block = Block(dim, dim_out, groups = groups)
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
def forward(self, x):
h = self.block(x)
return h + self.res_conv(x)
class Discriminator(nn.Module):
def __init__(
self,
dims,
channels = 3,
groups = 8,
init_kernel_size = 5,
cross_embed_kernel_sizes = (3, 7, 15)
):
super().__init__()
init_dim, *_, final_dim = dims
dim_pairs = zip(dims[:-1], dims[1:])
self.layers = nn.ModuleList([nn.Sequential(
CrossEmbedLayer(channels, cross_embed_kernel_sizes, init_dim, stride = 1),
leaky_relu()
)])
for dim_in, dim_out in dim_pairs:
self.layers.append(nn.Sequential(
nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1),
leaky_relu(),
nn.GroupNorm(groups, dim_out),
ResnetBlock(dim_out, dim_out),
))
self.to_logits = nn.Sequential( # return 5 x 5, for PatchGAN-esque training
nn.Conv2d(final_dim, final_dim, 1),
leaky_relu(),
nn.Conv2d(final_dim, 1, 4)
)
def forward(self, x):
for net in self.layers:
x = net(x)
return self.to_logits(x)