Haiyu Wu
commited on
Commit
·
3192730
1
Parent(s):
5ba379a
update
Browse files
app.py
CHANGED
@@ -25,11 +25,11 @@ def clear_generation_time():
|
|
25 |
|
26 |
|
27 |
def generating():
|
28 |
-
return "
|
29 |
|
30 |
|
31 |
def done():
|
32 |
-
return "
|
33 |
|
34 |
|
35 |
def sample_nearby_vectors(base_vector, epsilons=[0.3, 0.5, 0.7], percentages=[0.4, 0.4, 0.2]):
|
@@ -102,14 +102,14 @@ def image_generation(input_image, quality, random_perturbation, sigma, dimension
|
|
102 |
updated_feature = updated_feature / np.linalg.norm(updated_feature, 2, 1, True) * norm
|
103 |
features.append(updated_feature)
|
104 |
features = torch.tensor(np.vstack(features)).float().to(device)
|
105 |
-
if quality >
|
106 |
images, _ = generator.gen_image(features, quality_model, id_model, q_target=quality)
|
107 |
else:
|
108 |
_, _, images, *_ = generator(features)
|
109 |
else:
|
110 |
features = torch.repeat_interleave(torch.tensor(feature), 3, dim=0)
|
111 |
features = sample_nearby_vectors(features, [sigma], [1]).float().to(device)
|
112 |
-
if quality >
|
113 |
images, _ = generator.gen_image(features, quality_model, id_model, q_target=quality, class_rep=features)
|
114 |
else:
|
115 |
_, _, images, *_ = generator(features)
|
@@ -121,7 +121,7 @@ def image_generation(input_image, quality, random_perturbation, sigma, dimension
|
|
121 |
return generated_images
|
122 |
|
123 |
@spaces.GPU
|
124 |
-
def process_input(image_input, num1, num2, num3, num4,
|
125 |
# Ensure all dimension numbers are within [0, 512)
|
126 |
num1, num2, num3, num4 = [max(0, min(int(n), 511)) for n in [num1, num2, num3, num4]]
|
127 |
|
@@ -135,7 +135,7 @@ def process_input(image_input, num1, num2, num3, num4, num5, num6, num7, num8, r
|
|
135 |
input_data = Image.open(image_input)
|
136 |
input_data = np.array(input_data.resize((112, 112)))
|
137 |
|
138 |
-
generated_images = image_generation(input_data, target_quality, random_perturbation, sigma, [num1, num2, num3, num4
|
139 |
|
140 |
return generated_images
|
141 |
|
@@ -152,10 +152,6 @@ def toggle_inputs(random_perturbation):
|
|
152 |
gr.update(interactive=not random_perturbation), # num2
|
153 |
gr.update(interactive=not random_perturbation), # num3
|
154 |
gr.update(interactive=not random_perturbation), # num4
|
155 |
-
gr.update(interactive=not random_perturbation), # num5
|
156 |
-
gr.update(interactive=not random_perturbation), # num6
|
157 |
-
gr.update(interactive=not random_perturbation), # num7
|
158 |
-
gr.update(interactive=not random_perturbation), # num8
|
159 |
]
|
160 |
|
161 |
|
@@ -189,13 +185,13 @@ def main():
|
|
189 |
|
190 |
with gr.Row():
|
191 |
num1 = gr.Number(label="Dimension 1", value=0, minimum=0, maximum=511, step=1)
|
192 |
-
num2 = gr.Number(label="Dimension 2", value=
|
193 |
-
num3 = gr.Number(label="Dimension 3", value=
|
194 |
-
num4 = gr.Number(label="Dimension 4", value=
|
195 |
-
num5 = gr.Number(label="Dimension 5", value=
|
196 |
-
num6 = gr.Number(label="Dimension 6", value=
|
197 |
-
num7 = gr.Number(label="Dimension 7", value=
|
198 |
-
num8 = gr.Number(label="Dimension 8", value=
|
199 |
|
200 |
random_seed = gr.Number(label="Random Seed", value=42, minimum=0, maximum=MAX_SEED, step=1)
|
201 |
target_quality = gr.Slider(label="Minimum Quality", minimum=22, maximum=35, step=1, value=24)
|
@@ -227,7 +223,7 @@ def main():
|
|
227 |
random_perturbation.change(
|
228 |
fn=toggle_inputs,
|
229 |
inputs=[random_perturbation],
|
230 |
-
outputs=[sigma, num1, num2, num3, num4
|
231 |
)
|
232 |
|
233 |
generated_images = gr.State([])
|
@@ -242,7 +238,7 @@ def main():
|
|
242 |
outputs=[generation_time]
|
243 |
).then(
|
244 |
fn=process_input,
|
245 |
-
inputs=[image_file, num1, num2, num3, num4,
|
246 |
outputs=[generated_images]
|
247 |
).then(
|
248 |
fn=done,
|
|
|
25 |
|
26 |
|
27 |
def generating():
|
28 |
+
return "Generating images..."
|
29 |
|
30 |
|
31 |
def done():
|
32 |
+
return "Done!"
|
33 |
|
34 |
|
35 |
def sample_nearby_vectors(base_vector, epsilons=[0.3, 0.5, 0.7], percentages=[0.4, 0.4, 0.2]):
|
|
|
102 |
updated_feature = updated_feature / np.linalg.norm(updated_feature, 2, 1, True) * norm
|
103 |
features.append(updated_feature)
|
104 |
features = torch.tensor(np.vstack(features)).float().to(device)
|
105 |
+
if quality > 25:
|
106 |
images, _ = generator.gen_image(features, quality_model, id_model, q_target=quality)
|
107 |
else:
|
108 |
_, _, images, *_ = generator(features)
|
109 |
else:
|
110 |
features = torch.repeat_interleave(torch.tensor(feature), 3, dim=0)
|
111 |
features = sample_nearby_vectors(features, [sigma], [1]).float().to(device)
|
112 |
+
if quality > 25:
|
113 |
images, _ = generator.gen_image(features, quality_model, id_model, q_target=quality, class_rep=features)
|
114 |
else:
|
115 |
_, _, images, *_ = generator(features)
|
|
|
121 |
return generated_images
|
122 |
|
123 |
@spaces.GPU
|
124 |
+
def process_input(image_input, num1, num2, num3, num4, random_seed, target_quality, random_perturbation, sigma, progress=gr.Progress()):
|
125 |
# Ensure all dimension numbers are within [0, 512)
|
126 |
num1, num2, num3, num4 = [max(0, min(int(n), 511)) for n in [num1, num2, num3, num4]]
|
127 |
|
|
|
135 |
input_data = Image.open(image_input)
|
136 |
input_data = np.array(input_data.resize((112, 112)))
|
137 |
|
138 |
+
generated_images = image_generation(input_data, target_quality, random_perturbation, sigma, [num1, num2, num3, num4], progress)
|
139 |
|
140 |
return generated_images
|
141 |
|
|
|
152 |
gr.update(interactive=not random_perturbation), # num2
|
153 |
gr.update(interactive=not random_perturbation), # num3
|
154 |
gr.update(interactive=not random_perturbation), # num4
|
|
|
|
|
|
|
|
|
155 |
]
|
156 |
|
157 |
|
|
|
185 |
|
186 |
with gr.Row():
|
187 |
num1 = gr.Number(label="Dimension 1", value=0, minimum=0, maximum=511, step=1)
|
188 |
+
num2 = gr.Number(label="Dimension 2", value=0, minimum=0, maximum=511, step=1)
|
189 |
+
num3 = gr.Number(label="Dimension 3", value=0, minimum=0, maximum=511, step=1)
|
190 |
+
num4 = gr.Number(label="Dimension 4", value=0, minimum=0, maximum=511, step=1)
|
191 |
+
# num5 = gr.Number(label="Dimension 5", value=0, minimum=0, maximum=511, step=1)
|
192 |
+
# num6 = gr.Number(label="Dimension 6", value=0, minimum=0, maximum=511, step=1)
|
193 |
+
# num7 = gr.Number(label="Dimension 7", value=0, minimum=0, maximum=511, step=1)
|
194 |
+
# num8 = gr.Number(label="Dimension 8", value=0, minimum=0, maximum=511, step=1)
|
195 |
|
196 |
random_seed = gr.Number(label="Random Seed", value=42, minimum=0, maximum=MAX_SEED, step=1)
|
197 |
target_quality = gr.Slider(label="Minimum Quality", minimum=22, maximum=35, step=1, value=24)
|
|
|
223 |
random_perturbation.change(
|
224 |
fn=toggle_inputs,
|
225 |
inputs=[random_perturbation],
|
226 |
+
outputs=[sigma, num1, num2, num3, num4]
|
227 |
)
|
228 |
|
229 |
generated_images = gr.State([])
|
|
|
238 |
outputs=[generation_time]
|
239 |
).then(
|
240 |
fn=process_input,
|
241 |
+
inputs=[image_file, num1, num2, num3, num4, random_seed, target_quality, random_perturbation, sigma],
|
242 |
outputs=[generated_images]
|
243 |
).then(
|
244 |
fn=done,
|