import torch import pytorch_lightning as pl from pixel_generator.mage.taming.modules.diffusionmodules.model import Encoder, Decoder from pixel_generator.mage.taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer class VQModel(pl.LightningModule): def __init__(self, ddconfig, n_embed, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw ): super().__init__() self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape) if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) self.image_key = image_key if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu") if "state_dict" in sd.keys(): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] print("Strict load") self.load_state_dict(sd, strict=True) print(f"Restored from {path}") def encode(self, x): h = self.encoder(x) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info def decode(self, quant): dec = self.decoder(quant) return dec def decode_code(self, code_b): quant_b = self.quantize.embed_code(code_b) dec = self.decode(quant_b) return dec def forward(self, input): quant, diff, _ = self.encode(input) dec = self.decode(quant) return dec, diff