from functools import partial import torch import torch.nn as nn import torch.optim as optim from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp from omegaconf import OmegaConf import numpy as np import scipy.stats as stats from pixel_generator.vec2face.im_decoder import Decoder from sixdrepnet.model import utils class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale attn = attn - torch.max(attn, dim=-1, keepdim=True)[0] attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, return_attention=False): with torch.cuda.amp.autocast(enabled=False): if return_attention: _, attn = self.attn(self.norm1(x)) return attn else: y, _ = self.attn(self.norm1(x)) x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class LabelSmoothingCrossEntropy(nn.Module): """ NLL loss with label smoothing. """ def __init__(self, smoothing=0.1): super(LabelSmoothingCrossEntropy, self).__init__() assert smoothing < 1.0 self.smoothing = smoothing self.confidence = 1. - smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: logprobs = torch.nn.functional.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = self.confidence * nll_loss + self.smoothing * smooth_loss return loss class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, hidden_size, max_position_embeddings, dropout=0.1): super().__init__() self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6) self.dropout = nn.Dropout(dropout) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1))) torch.nn.init.normal_(self.position_embeddings.weight, std=.02) def forward( self, input_ids ): input_shape = input_ids.size() seq_length = input_shape[1] position_ids = self.position_ids[:, :seq_length] position_embeddings = self.position_embeddings(position_ids) embeddings = input_ids + position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MaskedGenerativeEncoderViT(nn.Module): """ Masked Autoencoder with VisionTransformer backbone """ def __init__(self, img_size=112, patch_size=7, in_chans=3, embed_dim=1024, depth=24, num_heads=16, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False, mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25, use_rep=True, rep_dim=512, rep_drop_prob=0.0, use_class_label=False): super().__init__() assert not (use_rep and use_class_label) # -------------------------------------------------------------------------- vqgan_config = OmegaConf.load('configs/vec2face/vqgan.yaml').model self.token_emb = BertEmbeddings(hidden_size=embed_dim, max_position_embeddings=49 + 1, dropout=0.1) self.use_rep = use_rep self.use_class_label = use_class_label if self.use_rep: print("Use representation as condition!") self.latent_prior_proj_f = nn.Linear(rep_dim, embed_dim, bias=True) # CFG config self.rep_drop_prob = rep_drop_prob self.feature_token = nn.Linear(1, 49, bias=True) self.center_token = nn.Linear(embed_dim, 49, bias=True) self.im_decoder = Decoder(**vqgan_config.params.ddconfig) self.im_decoder_proj = nn.Linear(embed_dim, vqgan_config.params.ddconfig.z_channels) # Vec2Face variant masking ratio self.mask_ratio_min = mask_ratio_min self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std, (mask_ratio_max - mask_ratio_mu) / mask_ratio_std, loc=mask_ratio_mu, scale=mask_ratio_std) # -------------------------------------------------------------------------- # Vec2Face encoder specifics dropout_rate = 0.1 self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) num_patches = self.patch_embed.num_patches self.blocks = nn.ModuleList([ Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer, drop=dropout_rate, attn_drop=dropout_rate) for i in range(depth)]) self.norm = norm_layer(embed_dim) # -------------------------------------------------------------------------- # Vec2Face decoder specifics self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) self.pad_with_cls_token = True self.decoder_pos_embed_learned = nn.Parameter( torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=True) # learnable pos embedding self.decoder_blocks = nn.ModuleList([ Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer, drop=dropout_rate, attn_drop=dropout_rate) for i in range(decoder_depth)]) self.decoder_norm = norm_layer(decoder_embed_dim) # -------------------------------------------------------------------------- self.initialize_weights() def initialize_weights(self): w = self.patch_embed.proj.weight.data torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02) torch.nn.init.xavier_uniform_(self.feature_token.weight) torch.nn.init.xavier_uniform_(self.center_token.weight) torch.nn.init.xavier_uniform_(self.latent_prior_proj_f.weight) torch.nn.init.xavier_uniform_(self.decoder_embed.weight) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): # we use xavier_uniform following official JAX ViT: torch.nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_encoder(self, rep): # expand to feature map device = rep.device encode_feature = self.latent_prior_proj_f(rep) feature_token = self.feature_token(encode_feature.unsqueeze(-1)).permute(0, 2, 1) gt_indices = torch.cat((encode_feature.unsqueeze(1), feature_token), dim=1).clone().detach() # masked row indices bsz, seq_len, _ = feature_token.size() mask_ratio_min = self.mask_ratio_min mask_rate = self.mask_ratio_generator.rvs(1)[0] num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min)) num_masked_tokens = int(np.ceil(seq_len * mask_rate)) # it is possible that two elements of the noise is the same, so do a while loop to avoid it while True: noise = torch.rand(bsz, seq_len, device=rep.device) # noise in [0, 1] sorted_noise, _ = torch.sort(noise, dim=1) # ascend: small is remove, large is keep cutoff_drop = sorted_noise[:, num_dropped_tokens - 1:num_dropped_tokens] cutoff_mask = sorted_noise[:, num_masked_tokens - 1:num_masked_tokens] token_drop_mask = (noise <= cutoff_drop).float() token_all_mask = (noise <= cutoff_mask).float() if token_drop_mask.sum() == bsz * num_dropped_tokens and \ token_all_mask.sum() == bsz * num_masked_tokens: break else: print("Rerandom the noise!") token_all_mask_bool = token_all_mask.bool() encode_feature_expanded = encode_feature.unsqueeze(1).expand(-1, feature_token.shape[1], -1) feature_token[token_all_mask_bool] = encode_feature_expanded[token_all_mask_bool] # concatenate with image feature feature_token = torch.cat([encode_feature.unsqueeze(1), feature_token], dim=1) token_drop_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_drop_mask], dim=1) token_all_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_all_mask], dim=1) # bert embedding input_embeddings = self.token_emb(feature_token) bsz, seq_len, emb_dim = input_embeddings.shape # dropping token_keep_mask = 1 - token_drop_mask input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim) # apply Transformer blocks x = input_embeddings_after_drop for blk in self.blocks: x = blk(x) x = self.norm(x) return x, gt_indices, token_drop_mask, token_all_mask def forward_decoder(self, x, token_drop_mask, token_all_mask): # embed incomplete feature map x = self.decoder_embed(x) # fill masked positions with image feature mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1) x_after_pad = mask_tokens.clone() x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2]) x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad) # add pos embed x = x_after_pad + self.decoder_pos_embed_learned # apply Transformer blocks for blk in self.decoder_blocks: x = blk(x) logits = self.decoder_norm(x) bsz, _, emb_dim = logits.shape # an image decoder decoder_proj = self.im_decoder_proj(logits[:, 1:, :].reshape(bsz, 7, 7, emb_dim)).permute(0, 3, 1, 2) return decoder_proj, logits def get_last_layer(self): return self.im_decoder.conv_out.weight def forward(self, rep): last_layer = self.get_last_layer() latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(rep) decoder_proj, logits = self.forward_decoder(latent, token_drop_mask, token_all_mask) image = self.im_decoder(decoder_proj) return gt_indices, logits, image, last_layer, token_all_mask def gen_image(self, rep, quality_model, fr_model, pose_model=None, age_model=None, class_rep=None, num_iter=1, lr=1e-1, q_target=27, pose=60): rep_copy = rep.clone().detach().requires_grad_(True) optm = optim.Adam([rep_copy], lr=lr) i = 0 while i < num_iter: latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy) decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask) image = self.im_decoder(decoder_proj).clip(max=1., min=-1.) # feature comparison out_feature = fr_model(image) if class_rep is None: id_loss = torch.mean(1 - torch.cosine_similarity(out_feature, rep)) else: distance = 1 - torch.cosine_similarity(out_feature, class_rep) id_loss = torch.mean(torch.where(distance > 0., distance, torch.zeros_like(distance))) quality = quality_model(image) norm = torch.norm(quality, 2, 1, True) q_loss = torch.where(norm < q_target, q_target - norm, torch.zeros_like(norm)) pose_loss = 0 if pose_model is not None: # sixdrepnet bgr_img = image[:, [2, 1, 0], :, :] pose_info = pose_model(((bgr_img + 1) / 2)) pose_info = utils.compute_euler_angles_from_rotation_matrices( pose_info) * 180 / np.pi yaw_loss = torch.abs(pose - torch.abs(pose_info[:, 1].clip(min=-90, max=90))) pose_loss = torch.mean(yaw_loss) q_loss = torch.mean(q_loss) if pose_loss > 5 or id_loss > 0.3 or q_loss > 1: i -= 1 loss = id_loss * 100 + q_loss + pose_loss optm.zero_grad() loss.backward(retain_graph=True) optm.step() i += 1 latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy) decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask) image = self.im_decoder(decoder_proj).clip(max=1., min=-1.) return image, rep_copy.detach() def vec2face_vit_base_patch16(**kwargs): model = MaskedGenerativeEncoderViT( patch_size=16, embed_dim=768, depth=12, num_heads=12, decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vec2face_vit_large_patch16(**kwargs): model = MaskedGenerativeEncoderViT( patch_size=16, embed_dim=1024, depth=24, num_heads=16, decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def vec2face_vit_huge_patch16(**kwargs): model = MaskedGenerativeEncoderViT( patch_size=16, embed_dim=1280, depth=32, num_heads=16, decoder_embed_dim=1280, decoder_depth=8, decoder_num_heads=16, mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model