OptVQ / optvq /utils /logger.py
BorelTHU's picture
initiate
223d932
raw
history blame
14.8 kB
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------
import time
import datetime
from typing import List
import functools
import os
from PIL import Image
from termcolor import colored
import sys
import logging
from omegaconf import OmegaConf
import json
try:
from torch.utils.tensorboard import SummaryWriter
from torch import Tensor
import torch
except:
raise ImportError("Please install torch to use this module!")
"""
NOTE: The `log` instance is a global variable, which should be imported by other modules as:
`import optvq.utils.logger as logger`
rather than
`from optvq.utils.logger import log`.
"""
def setup_printer(file_log_dir: str, use_console: bool = True):
printer = logging.getLogger("LOG")
printer.setLevel(logging.DEBUG)
printer.propagate = False
# create formatter
fmt = '[%(asctime)s %(name)s] (%(filename)s %(lineno)d): %(levelname)s %(message)s'
color_fmt = colored('[%(asctime)s %(name)s]', 'green') + \
colored('(%(filename)s %(lineno)d)', 'yellow') + ': %(levelname)s %(message)s'
# create the console handler
if use_console:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(
logging.Formatter(fmt=color_fmt, datefmt="%Y-%m-%d %H:%M:%S")
)
printer.addHandler(console_handler)
# create the file handler
file_handler = logging.FileHandler(os.path.join(file_log_dir, "record.txt"), mode="a")
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(
logging.Formatter(fmt=fmt, datefmt="%Y-%m-%d %H:%M:%S")
)
printer.addHandler(file_handler)
return printer
@functools.lru_cache()
def config_loggers(log_dir: str, local_rank: int = 0, master_rank: int = 0):
global log
if local_rank == master_rank:
log = LogManager(log_dir=log_dir, main_logger=True)
else:
log = LogManager(log_dir=log_dir, main_logger=False)
class ProgressWithIndices:
def __init__(self, total: int, sep_char: str = "| ",
num_per_row: int = 4):
self.total = total
self.sep_char = sep_char
self.num_per_row = num_per_row
self.count = 0
self.start_time = time.time()
self.past_time = None
self.current_time = None
self.eta = None
self.speed = None
self.used_time = 0
def update(self):
self.count += 1
if self.count <= self.total:
self.past_time = self.current_time
self.current_time = time.time()
# compute eta
if self.past_time is not None:
self.eta = (self.total - self.count) * (self.current_time - self.past_time)
self.eta = str(datetime.timedelta(seconds=int(self.eta)))
self.speed = 1 / (self.current_time - self.past_time + 1e-8)
# compute used time
self.used_time = self.current_time - self.start_time
self.used_time = str(datetime.timedelta(seconds=int(self.used_time)))
else:
self.eta = 0
self.speed = 0
self.past_time = None
self.current_time = None
def print(self, prefix: str = "", content: str = "", ):
global log
prefix_str = f"{prefix}\t" + f"[{self.count}/{self.total} {self.used_time}/Eta:{self.eta}], Speed:{self.speed}iters/s\n"
content_list = content.split(self.sep_char)
content_list = [content.strip() for content in content_list]
content_list = [
"\t\t" + self.sep_char.join(content_list[i:i + self.num_per_row])
for i in range(0, len(content_list), self.num_per_row)
]
content = prefix_str + "\n".join(content_list)
log.info(content)
class LogManager:
"""
This class encapsulates the tensorboard writer, the statistic meters, the console printer, and the progress counters.
Args:
log_dir (str): the parent directory to save all the logs
init_meters (List[str]): the initial meters to be shown
show_avg (bool): whether to show the average value of the meters
"""
def __init__(self, log_dir: str, init_meters: List[str] = [],
show_avg: bool = True, main_logger: bool = False):
# initiate all the directories
self.show_avg = show_avg
self.log_dir = log_dir
self.main_logger = main_logger
self.setup_dirs()
# initiate the statistic meters
self.meters = {meter: AverageMeter() for meter in init_meters}
# initiate the progress counters
self.total_steps = 0
self.total_epochs = 0
if self.main_logger:
# initiate the tensorboard writer
self.board = SummaryWriter(log_dir=self.tb_log_dir)
# initiate the console printer
self.printer = setup_printer(self.file_log_dir, use_console=True)
def state_dict(self):
return {
"total_steps": self.total_steps,
"total_epochs": self.total_epochs,
"meters": {
meter_name: meter.state_dict() for meter_name, meter in self.meters.items()
}
}
def load_state_dict(self, state_dict: dict):
self.total_steps = state_dict["total_steps"]
self.total_epochs = state_dict["total_epochs"]
for meter_name, meter_state_dict in state_dict["meters"].items():
if meter_name not in self.meters:
self.meters[meter_name] = AverageMeter()
self.meters[meter_name].load_state_dict(meter_state_dict)
### About directories
def setup_dirs(self):
"""
The structure of the log directory:
- log_dir: [tb_log, txt_log, img_log, model_log]
"""
self.tb_log_dir = os.path.join(self.log_dir, "tb_log")
# NOTE: For now, we save the txt records in the parent directory
# self.file_log_dir = os.path.join(self.log_dir, "txt_log")
self.file_log_dir = self.log_dir
self.img_log_dir = os.path.join(self.log_dir, "img_log")
self.config_path = os.path.join(self.log_dir, "config.yaml")
self.checkpoint_path = os.path.join(self.log_dir, "checkpoint.pth")
self.backup_checkpoint_path = os.path.join(self.log_dir, "checkpoint.pth")
self.save_logger_path = os.path.join(self.log_dir, "logger.json")
if self.main_logger:
os.makedirs(self.tb_log_dir, exist_ok=True)
os.makedirs(self.file_log_dir, exist_ok=True)
os.makedirs(self.img_log_dir, exist_ok=True)
### About printer
def info(self, msg, *args, **kwargs):
if self.main_logger:
self.printer.info(msg, *args, **kwargs)
def show(self, include_key: str = ""):
if isinstance(include_key, str):
include_key = [include_key]
if self.show_avg:
return "| ".join([f"{meter_name}: {meter.val:.4f}/{meter.avg:.4f}" for meter_name, meter in self.meters.items() if any([k in meter_name for k in include_key])])
else:
return "| ".join([f"{meter_name}: {meter.val:.4f}" for meter_name, meter in self.meters.items() if any([k in meter_name for k in include_key])])
### About counter
def update_steps(self):
self.total_steps += 1
return self.total_steps
def update_epochs(self):
self.total_epochs += 1
return self.total_epochs
### About tensorboard
def add_histogram(self, tag: str, values: Tensor, global_step: int = None):
if self.main_logger:
global_step = self.total_steps if global_step is None else global_step
self.board.add_histogram(tag, values, global_step)
def add_scalar(self, tag: str, scalar_value: float, global_step: int = None):
if isinstance(scalar_value, Tensor):
scalar_value = scalar_value.item()
if tag in self.meters:
cur_step = self.meters[tag].update(scalar_value)
cur_step = cur_step if global_step is None else global_step
if self.main_logger:
self.board.add_scalar(tag, scalar_value, cur_step)
else:
self.meters[tag] = AverageMeter()
cur_step = self.meters[tag].update(scalar_value)
cur_step = cur_step if global_step is None else global_step
if self.main_logger:
print(f"Create new meter: {tag}!")
self.board.add_scalar(tag, scalar_value, cur_step)
def add_scalar_dict(self, scalar_dict: dict, global_step: int = None):
for tag, scalar_value in scalar_dict.items():
self.add_scalar(tag, scalar_value, global_step)
def add_images(self, tag: str, images: Tensor, global_step: int = None):
if self.main_logger:
global_step = self.total_steps if global_step is None else global_step
self.board.add_images(tag, images, global_step, dataformats="NCHW")
### About saving and resuming
def save_configs(self, config):
if self.main_logger:
# save config as yaml file
OmegaConf.save(config, self.config_path)
self.info(f"Save config to {self.config_path}.")
# save logger
state_dict = self.state_dict()
with open(self.save_logger_path, "w") as f:
json.dump(state_dict, f)
def load_configs(self):
# load config
assert os.path.exists(self.config_path), f"Config {self.config_path} does not exist!"
config = OmegaConf.load(self.config_path)
# load logger
assert os.path.exists(self.save_logger_path), f"Logger {self.save_logger_path} does not exist!"
state_dict = json.load(open(self.save_logger_path, "r"))
self.load_state_dict(state_dict)
return config
def save_checkpoint(self, model, optimizers, schedulers, scalers, suffix: str = ""):
"""
checkpoint_dict: model, optimizer, scheduler, scalers
"""
if self.main_logger:
# save checkpoint_dict
checkpoint_dict = {
"model": model.state_dict(),
"epoch": self.total_epochs,
"step": self.total_steps
}
checkpoint_dict.update({k: v.state_dict() for k, v in optimizers.items()})
checkpoint_dict.update({k: v.state_dict() for k, v in schedulers.items() if v is not None})
checkpoint_dict.update({k: v.state_dict() for k, v in scalers.items()})
checkpoint_path = self.checkpoint_path + suffix
torch.save(checkpoint_dict, checkpoint_path)
if os.path.exists(self.backup_checkpoint_path):
os.remove(self.backup_checkpoint_path)
self.backup_checkpoint_path = checkpoint_path + f".epoch{self.total_epochs}"
torch.save(checkpoint_dict, self.backup_checkpoint_path)
self.info(f"### Epoch: {self.total_epochs}| Steps: {self.total_steps}| Save checkpoint to {checkpoint_path}.")
def load_checkpoint(self, device, model, optimizers, schedulers, scalers, resume: str = None):
resume_path = self.checkpoint_path if resume is None else resume
assert os.path.exists(resume_path), f"Resume {resume_path} does not exist!"
# load checkpoint_dict
checkpoint_dict = torch.load(resume_path, map_location=device)
model.load_state_dict(checkpoint_dict["model"])
self.total_epochs = checkpoint_dict["epoch"]
self.total_steps = checkpoint_dict["step"]
for k, v in optimizers.items():
v.load_state_dict(checkpoint_dict[k])
for k, v in schedulers.items():
v.load_state_dict(checkpoint_dict[k])
for k, v in scalers.items():
v.load_state_dict(checkpoint_dict[k])
self.info(f"### Epoch: {self.total_epochs}| Steps: {self.total_steps}| Resume checkpoint from {resume_path}.")
return self.total_epochs
class EmptyManager:
def __init__(self):
for func_name in LogManager.__dict__.keys():
if not func_name.startswith("_"):
setattr(self, func_name, lambda *args, **kwargs: print(f"Empty Manager! {func_name} is not available!"))
class AverageMeter:
def __init__(self):
self.reset()
def state_dict(self):
return {
"val": self.val,
"avg": self.avg,
"sum": self.sum,
"count": self.count,
}
def load_state_dict(self, state_dict: dict):
self.val = state_dict["val"]
self.avg = state_dict["avg"]
self.sum = state_dict["sum"]
self.count = state_dict["count"]
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
return 0
def update(self, val: float, n: int = 1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
return self.count
def __str__(self):
return f"{self.avg:.4f}"
def save_image(x: Tensor, save_path: str, scale_to_256: bool = True):
"""
Args:
x (tensor): default data range is [0, 1]
"""
if scale_to_256:
x = x.mul(255).clamp(0, 255)
x = x.permute(1, 2, 0).detach().cpu().numpy().astype("uint8")
img = Image.fromarray(x)
img.save(save_path)
def save_images(images_list, ids_list, meta_path):
for i, (image, id) in enumerate(zip(images_list, ids_list)):
save_path = os.path.join(meta_path, f"{id}.png")
save_image(image, save_path)
def save_images_multithread(images_list, ids_list, meta_path):
n_workers = 32
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=n_workers) as executor:
for i in range(0, len(images_list), n_workers):
cur_images = images_list[i:(i + n_workers)]
cur_ids = ids_list[i:(i + n_workers)]
executor.submit(save_images, cur_images, cur_ids, meta_path)
def add_prefix(log_dict: dict, prefix: str):
return {
f"{prefix}/{key}": val for key, val in log_dict.items()
}
##################### GLOBAL VARIABLES #####################
log = EmptyManager()
GET_STATS: bool = (os.environ.get("ENABLE_STATS", "1") == "1")
###########################################################