OptVQ / optvq /losses /aeloss_disc.py
BorelTHU's picture
initiate
223d932
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------
# Modified from [thuanz123/enhancing-transformers](https://github.com/thuanz123/enhancing-transformers)
# Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved.
# ------------------------------------------------------------------------------
# Modified from [CompVis/taming-transformers](https://github.com/CompVis/taming-transformers)
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer. All Rights Reserved.
# ------------------------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import lpips
from optvq.models.discriminator import NLayerDiscriminator, weights_init
class DummyLoss(nn.Module):
def __init__(self):
super().__init__()
def hinge_d_loss(logits_real, logits_fake):
loss_real = torch.mean(F.relu(1. - logits_real))
loss_fake = torch.mean(F.relu(1. + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
torch.mean(torch.nn.functional.softplus(-logits_real)) +
torch.mean(torch.nn.functional.softplus(logits_fake)))
return d_loss
class AELossWithDisc(nn.Module):
def __init__(self,
disc_start,
pixelloss_weight=1.0,
disc_in_channels=3,
disc_num_layers=3,
use_actnorm=False,
disc_ndf=64,
disc_conditional=False,
disc_loss="hinge",
loss_l1_weight: float = 1.0,
loss_l2_weight: float = 1.0,
loss_p_weight: float = 1.0,
loss_q_weight: float = 1.0,
loss_g_weight: float = 1.0,
loss_d_weight: float = 1.0
):
super(AELossWithDisc, self).__init__()
assert disc_loss in ["hinge", "vanilla"]
self.pixel_weight = pixelloss_weight
self.perceptual_loss = lpips.LPIPS(net="vgg", verbose=False).eval()
self.loss_l1_weight = loss_l1_weight
self.loss_l2_weight = loss_l2_weight
self.loss_p_weight = loss_p_weight
self.loss_q_weight = loss_q_weight
self.loss_g_weight = loss_g_weight
self.loss_d_weight = loss_d_weight
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
n_layers=disc_num_layers,
use_actnorm=use_actnorm,
ndf=disc_ndf
).apply(weights_init)
self.discriminator_iter_start = disc_start
if disc_loss == "hinge":
self.disc_loss = hinge_d_loss
elif disc_loss == "vanilla":
self.disc_loss = vanilla_d_loss
else:
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
self.disc_conditional = disc_conditional
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
g_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
g_weight = torch.clamp(g_weight, 0.0, 1e4).detach()
g_weight = g_weight * self.loss_g_weight
# detection nan
if torch.isnan(g_weight).any():
g_weight = torch.tensor(0.0, device=g_weight.device)
return g_weight
@torch.autocast(device_type="cuda", enabled=False)
def forward(self, codebook_loss, inputs, reconstructions, mode, last_layer=None, cond=None, global_step=0):
x = inputs.contiguous().float()
x_rec = reconstructions.contiguous().float()
# compute q loss
loss_q = codebook_loss.mean()
# compute l1 loss
loss_l1 = (x_rec - x).abs().mean() if self.loss_l1_weight > 0.0 else torch.tensor(0.0, device=x.device)
# compute l2 loss
loss_l2 = (x_rec - x).pow(2).mean() if self.loss_l2_weight > 0.0 else torch.tensor(0.0, device=x.device)
# compute perceptual loss
loss_p = self.perceptual_loss(x, x_rec).mean() if self.loss_p_weight > 0.0 else torch.tensor(0.0, device=x.device)
# intigrate reconstruction loss
loss_rec = loss_l1 * self.loss_l1_weight + \
loss_l2 * self.loss_l2_weight + \
loss_p * self.loss_p_weight
# setup the factor_disc
if global_step < self.discriminator_iter_start:
factor_disc = 0.0
else:
factor_disc = 1.0
# now the GAN part
if mode == 0:
# generator update
if cond is None:
assert not self.disc_conditional
logits_fake = self.discriminator(x_rec)
else:
assert self.disc_conditional
logits_fake = self.discriminator(torch.cat((x_rec, cond), dim=1))
# compute g loss
loss_g = - logits_fake.mean()
try:
loss_g_weight = self.calculate_adaptive_weight(loss_rec, loss_g, last_layer=last_layer)
except RuntimeError:
# assert not self.training
loss_g_weight = torch.tensor(0.0)
loss = loss_g * loss_g_weight * factor_disc + \
loss_q * self.loss_q_weight + \
loss_rec
log = {"total_loss": loss.item(),
"loss_q": loss_q.item(),
"loss_rec": loss_rec.item(),
"loss_l1": loss_l1.item(),
"loss_l2": loss_l2.item(),
"loss_p": loss_p.item(),
"loss_g": loss_g.item(),
"loss_g_weight": loss_g_weight.item(),
"factor_disc": factor_disc,
}
return loss, log
if mode == 1:
# second pass for discriminator update
if cond is None:
logits_real = self.discriminator(x.detach())
logits_fake = self.discriminator(x_rec.detach())
else:
logits_real = self.discriminator(torch.cat((x.detach(), cond), dim=1))
logits_fake = self.discriminator(torch.cat((x_rec.detach(), cond), dim=1))
loss_d = self.disc_loss(logits_real, logits_fake).mean()
loss = loss_d * self.loss_d_weight
log = {"loss_d": loss_d.item(),
"logits_real": logits_real.mean().item(),
"logits_fake": logits_fake.mean().item()
}
return loss, log