|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import lpips |
|
|
|
from optvq.models.discriminator import NLayerDiscriminator, weights_init |
|
|
|
class DummyLoss(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
|
|
def hinge_d_loss(logits_real, logits_fake): |
|
loss_real = torch.mean(F.relu(1. - logits_real)) |
|
loss_fake = torch.mean(F.relu(1. + logits_fake)) |
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
return d_loss |
|
|
|
|
|
def vanilla_d_loss(logits_real, logits_fake): |
|
d_loss = 0.5 * ( |
|
torch.mean(torch.nn.functional.softplus(-logits_real)) + |
|
torch.mean(torch.nn.functional.softplus(logits_fake))) |
|
return d_loss |
|
|
|
|
|
class AELossWithDisc(nn.Module): |
|
def __init__(self, |
|
disc_start, |
|
pixelloss_weight=1.0, |
|
disc_in_channels=3, |
|
disc_num_layers=3, |
|
use_actnorm=False, |
|
disc_ndf=64, |
|
disc_conditional=False, |
|
disc_loss="hinge", |
|
loss_l1_weight: float = 1.0, |
|
loss_l2_weight: float = 1.0, |
|
loss_p_weight: float = 1.0, |
|
loss_q_weight: float = 1.0, |
|
loss_g_weight: float = 1.0, |
|
loss_d_weight: float = 1.0 |
|
): |
|
super(AELossWithDisc, self).__init__() |
|
assert disc_loss in ["hinge", "vanilla"] |
|
|
|
self.pixel_weight = pixelloss_weight |
|
self.perceptual_loss = lpips.LPIPS(net="vgg", verbose=False).eval() |
|
|
|
self.loss_l1_weight = loss_l1_weight |
|
self.loss_l2_weight = loss_l2_weight |
|
self.loss_p_weight = loss_p_weight |
|
self.loss_q_weight = loss_q_weight |
|
self.loss_g_weight = loss_g_weight |
|
self.loss_d_weight = loss_d_weight |
|
|
|
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, |
|
n_layers=disc_num_layers, |
|
use_actnorm=use_actnorm, |
|
ndf=disc_ndf |
|
).apply(weights_init) |
|
self.discriminator_iter_start = disc_start |
|
if disc_loss == "hinge": |
|
self.disc_loss = hinge_d_loss |
|
elif disc_loss == "vanilla": |
|
self.disc_loss = vanilla_d_loss |
|
else: |
|
raise ValueError(f"Unknown GAN loss '{disc_loss}'.") |
|
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") |
|
|
|
self.disc_conditional = disc_conditional |
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): |
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
|
|
g_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
g_weight = torch.clamp(g_weight, 0.0, 1e4).detach() |
|
g_weight = g_weight * self.loss_g_weight |
|
|
|
|
|
if torch.isnan(g_weight).any(): |
|
g_weight = torch.tensor(0.0, device=g_weight.device) |
|
return g_weight |
|
|
|
@torch.autocast(device_type="cuda", enabled=False) |
|
def forward(self, codebook_loss, inputs, reconstructions, mode, last_layer=None, cond=None, global_step=0): |
|
x = inputs.contiguous().float() |
|
x_rec = reconstructions.contiguous().float() |
|
|
|
|
|
loss_q = codebook_loss.mean() |
|
|
|
|
|
loss_l1 = (x_rec - x).abs().mean() if self.loss_l1_weight > 0.0 else torch.tensor(0.0, device=x.device) |
|
|
|
|
|
loss_l2 = (x_rec - x).pow(2).mean() if self.loss_l2_weight > 0.0 else torch.tensor(0.0, device=x.device) |
|
|
|
|
|
loss_p = self.perceptual_loss(x, x_rec).mean() if self.loss_p_weight > 0.0 else torch.tensor(0.0, device=x.device) |
|
|
|
|
|
loss_rec = loss_l1 * self.loss_l1_weight + \ |
|
loss_l2 * self.loss_l2_weight + \ |
|
loss_p * self.loss_p_weight |
|
|
|
|
|
if global_step < self.discriminator_iter_start: |
|
factor_disc = 0.0 |
|
else: |
|
factor_disc = 1.0 |
|
|
|
|
|
if mode == 0: |
|
|
|
if cond is None: |
|
assert not self.disc_conditional |
|
logits_fake = self.discriminator(x_rec) |
|
else: |
|
assert self.disc_conditional |
|
logits_fake = self.discriminator(torch.cat((x_rec, cond), dim=1)) |
|
|
|
|
|
loss_g = - logits_fake.mean() |
|
|
|
try: |
|
loss_g_weight = self.calculate_adaptive_weight(loss_rec, loss_g, last_layer=last_layer) |
|
except RuntimeError: |
|
|
|
loss_g_weight = torch.tensor(0.0) |
|
|
|
loss = loss_g * loss_g_weight * factor_disc + \ |
|
loss_q * self.loss_q_weight + \ |
|
loss_rec |
|
|
|
log = {"total_loss": loss.item(), |
|
"loss_q": loss_q.item(), |
|
"loss_rec": loss_rec.item(), |
|
"loss_l1": loss_l1.item(), |
|
"loss_l2": loss_l2.item(), |
|
"loss_p": loss_p.item(), |
|
"loss_g": loss_g.item(), |
|
"loss_g_weight": loss_g_weight.item(), |
|
"factor_disc": factor_disc, |
|
} |
|
return loss, log |
|
|
|
if mode == 1: |
|
|
|
if cond is None: |
|
logits_real = self.discriminator(x.detach()) |
|
logits_fake = self.discriminator(x_rec.detach()) |
|
else: |
|
logits_real = self.discriminator(torch.cat((x.detach(), cond), dim=1)) |
|
logits_fake = self.discriminator(torch.cat((x_rec.detach(), cond), dim=1)) |
|
|
|
loss_d = self.disc_loss(logits_real, logits_fake).mean() |
|
loss = loss_d * self.loss_d_weight |
|
|
|
log = {"loss_d": loss_d.item(), |
|
"logits_real": logits_real.mean().item(), |
|
"logits_fake": logits_fake.mean().item() |
|
} |
|
return loss, log |