# ------------------------------------------------------------------------------ # OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport # Copyright (c) 2024 Borui Zhang. All Rights Reserved. # Licensed under the MIT License [see LICENSE for details] # ------------------------------------------------------------------------------ import torch.nn as nn class PlainCNNEncoder(nn.Module): def __init__(self, in_dim: int = 3): super(PlainCNNEncoder, self).__init__() self.in_dim = in_dim self.in_fc = nn.Conv2d(in_channels=in_dim, out_channels=16, kernel_size=3, stride=1, padding=1, bias=True) self.act0 = nn.ReLU(inplace=True) self.down1 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=2, stride=2) self.conv1 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1, bias=True) self.act1 = nn.ReLU(inplace=True) self.down2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1, bias=True) self.act2 = nn.ReLU(inplace=True) self.out_fc = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1, bias=True) @property def hidden_dim(self): return 32 def forward(self, x): x = self.in_fc(x) x = self.act0(x) x = self.down1(x) x = self.conv1(x) x = self.act1(x) x = self.down2(x) x = self.conv2(x) x = self.act2(x) x = self.out_fc(x) return x class PlainCNNDecoder(nn.Module): def __init__(self, out_dim: int = 3): super(PlainCNNDecoder, self).__init__() self.out_dim = out_dim self.in_fc = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1, bias=True) self.act1 = nn.ReLU(inplace=True) self.up1 = nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=2, stride=2) self.conv1 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1, bias=True) self.act2 = nn.ReLU(inplace=True) self.up2 = nn.ConvTranspose2d(in_channels=16, out_channels=16, kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding=1, bias=True) self.act3 = nn.ReLU(inplace=True) self.out_fc = nn.Conv2d(in_channels=16, out_channels=out_dim, kernel_size=3, stride=1, padding=1, bias=True) @property def hidden_dim(self): return 32 def forward(self, x): x = self.in_fc(x) x = self.act1(x) x = self.up1(x) x = self.conv1(x) x = self.act2(x) x = self.up2(x) x = self.conv2(x) x = self.act3(x) x = self.out_fc(x) return x