Spaces:
Runtime error
Runtime error
File size: 1,526 Bytes
091b1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import torchaudio
import torch
import matplotlib.pyplot as plt
from pathlib import Path
def collect_valentini_paths(dataset_path):
clean_path = Path(dataset_path) / 'clean_testset_wav'
noisy_path = Path(dataset_path) / 'noisy_testset_wav'
clean_wavs = list(clean_path.glob("*"))
noisy_wavs = list(noisy_path.glob("*"))
return clean_wavs, noisy_wavs
def load_wav(path):
wav, org_sr = torchaudio.load(path)
wav = torchaudio.functional.resample(wav, orig_freq=org_sr, new_freq=16000)
return wav
def plot_spectrogram(stft, title="Spectrogram", xlim=None):
magnitude = stft.abs()
spectrogram = 20 * torch.log10(magnitude + 1e-8).numpy()
figure, axis = plt.subplots(1, 1)
img = axis.imshow(spectrogram, cmap="viridis", vmin=-100, vmax=0, origin="lower", aspect="auto")
figure.suptitle(title)
plt.colorbar(img, ax=axis)
plt.show()
def plot_mask(mask, title="Mask", xlim=None):
mask = mask.numpy()
figure, axis = plt.subplots(1, 1)
img = axis.imshow(mask, cmap="viridis", origin="lower", aspect="auto")
figure.suptitle(title)
plt.colorbar(img, ax=axis)
plt.show()
def generate_mixture(waveform_clean, waveform_noise, target_snr):
power_clean_signal = waveform_clean.pow(2).mean()
power_noise_signal = waveform_noise.pow(2).mean()
current_snr = 10 * torch.log10(power_clean_signal / power_noise_signal)
waveform_noise *= 10 ** (-(target_snr - current_snr) / 20)
return waveform_clean + waveform_noise
|