File size: 8,227 Bytes
96dc011
 
 
 
 
 
 
 
 
09bb564
 
 
96dc011
09bb564
 
96dc011
09bb564
 
 
 
 
 
96dc011
09bb564
 
 
96dc011
09bb564
 
 
0219bf8
96dc011
09bb564
 
96dc011
0219bf8
96dc011
0219bf8
96dc011
 
09bb564
 
 
0219bf8
c51f2cc
09bb564
0219bf8
09bb564
 
721e588
 
 
 
0219bf8
721e588
 
 
0219bf8
09bb564
0219bf8
 
 
09bb564
 
721e588
0219bf8
 
 
96dc011
09bb564
0219bf8
 
96dc011
09bb564
 
 
721e588
96dc011
0219bf8
721e588
09bb564
 
 
 
721e588
09bb564
 
 
721e588
09bb564
0219bf8
09bb564
 
 
 
 
0219bf8
09bb564
721e588
09bb564
 
 
 
721e588
09bb564
0219bf8
09bb564
 
 
 
 
 
 
0219bf8
09bb564
0219bf8
721e588
 
09bb564
0219bf8
721e588
d794e1d
09bb564
 
721e588
 
 
 
 
 
 
 
0219bf8
721e588
 
 
 
 
 
0219bf8
09bb564
721e588
09bb564
96dc011
0219bf8
 
09bb564
721e588
96dc011
09bb564
 
0219bf8
09bb564
 
 
721e588
09bb564
 
 
0219bf8
 
 
 
 
 
 
09bb564
 
 
 
 
 
 
 
 
 
 
 
 
 
96dc011
09bb564
 
96dc011
 
09bb564
 
96dc011
09bb564
 
 
96dc011
0219bf8
09bb564
0219bf8
96dc011
 
48078de
09bb564
 
 
96dc011
09bb564
 
721e588
96dc011
0219bf8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from generator import Segment, load_csm_1b
from huggingface_hub import hf_hub_download, login
from watermarking import watermark
import whisperx
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Authentication and Configuration
try:
    api_key = os.getenv("HF_TOKEN")
    if not api_key:
        raise ValueError("HF_TOKEN not found in environment variables.")
    login(token=api_key)

    CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
    if not CSM_1B_HF_WATERMARK:
        raise ValueError("WATERMARK_KEY not found or invalid in environment variables.")

    gpu_timeout = int(os.getenv("GPU_TIMEOUT", 180))
except (ValueError, TypeError) as e:
    logging.error(f"Configuration error: {e}")
    raise

SPACE_INTRO_TEXT = """\
# Sesame CSM 1B - Conversational Demo

This demo allows you to have a conversation with Sesame CSM 1B, leveraging WhisperX for speech-to-text and Gemma for generating responses.  This is an experimental integration and may require significant resources.

*Disclaimer: This demo relies on several large models.  Expect longer processing times, and potential resource limitations.*
"""

# Constants
SPEAKER_ID = 0  # Arbitrary speaker ID
MAX_CONTEXT_SEGMENTS = 5
MAX_GEMMA_LENGTH = 300
device = "cuda"  # if torch.cuda.is_available() else "cpu"

# Global conversation history
conversation_history = []

# Global variables to hold loaded models
global_generator = None
global_whisper_model = None
global_model_a = None
# global_whisper_metadata = None  # No longer needed at the global level
global_tokenizer_gemma = None
global_model_gemma = None


# --- HELPER FUNCTIONS ---

def transcribe_audio(audio_path: str, whisper_model, model_a) -> str:  # Removed whisper_metadata
    """Transcribes audio using WhisperX and aligns it."""
    try:
        audio = whisperx.load_audio(audio_path)
        result = whisper_model.transcribe(audio, batch_size=16)
        # Get language from the result.  Much more reliable.
        language = result["language"]


        # Align Whisper output
        model_a, metadata = whisperx.load_align_model(language_code=language, device=device) #Load it here to ensure metadata is extracted.
        result_aligned = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)

        return result_aligned["segments"][0]["text"]
    except Exception as e:
        logging.error(f"WhisperX transcription error: {e}")
        return "Error: Could not transcribe audio."


def generate_response(text: str, tokenizer_gemma, model_gemma) -> str:
    """Generates a response using Gemma."""
    try:
        input_text = "Here is a response for the user. " + text
        input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
        generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
        return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
    except Exception as e:
        logging.error(f"Gemma response generation error: {e}")
        return "I'm sorry, I encountered an error generating a response."


def load_audio(audio_path: str) -> torch.Tensor:
    """Loads audio from file and returns a torch tensor."""
    try:
        audio_tensor, sample_rate = torchaudio.load(audio_path)
        audio_tensor = audio_tensor.mean(dim=0)  # Mono audio
        if sample_rate != global_generator.sample_rate:
            audio_tensor = torchaudio.functional.resample(
                audio_tensor, orig_freq=sample_rate, new_freq=global_generator.sample_rate
            )
        return audio_tensor
    except Exception as e:
        logging.error(f"Audio loading error: {e}")
        raise gr.Error("Could not load or process the audio file.") from e


def clear_history():
    """Clears the conversation history"""
    global conversation_history
    conversation_history = []
    logging.info("Conversation history cleared.")
    return "Conversation history cleared."


# --- MAIN INFERENCE FUNCTION ---

@spaces.GPU(gpu_timeout=gpu_timeout)
def infer(user_audio) -> tuple:
    """Infers a response from the user audio."""
    global global_generator, global_whisper_model, global_model_a, global_tokenizer_gemma, global_model_gemma, device

    try:
        if not user_audio:
            raise ValueError("No audio input received.")

        # Load models if not already loaded
        if global_generator is None:
            model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
            global_generator = load_csm_1b(model_path, device)
            logging.info("Sesame CSM 1B loaded successfully on GPU.")

        if global_whisper_model is None:
            global_whisper_model = whisperx.load_model("large-v2", device) # No unpacking
            logging.info("WhisperX model loaded successfully on GPU.")

        if global_tokenizer_gemma is None:
            global_tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
            global_model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt").to(device)
            logging.info("Gemma 3 1B pt model loaded successfully on GPU.")
        return _infer(user_audio, global_generator, global_whisper_model, global_model_a, global_tokenizer_gemma, global_model_gemma) #Removed Metadata
    except Exception as e:
        logging.exception(f"Inference error: {e}")
        raise gr.Error(f"An error occurred during processing: {e}")


def _infer(user_audio, generator, whisper_model, model_a, tokenizer_gemma, model_gemma) -> tuple:
    """Processes the user input, generates a response, and returns audio."""
    global conversation_history

    try:
        # 1. ASR: Transcribe user audio using WhisperX
        user_text = transcribe_audio(user_audio, whisper_model, model_a) #Removed Metadata
        logging.info(f"User: {user_text}")

        # 2. LLM: Generate a response using Gemma
        ai_text = generate_response(user_text, tokenizer_gemma, model_gemma)
        logging.info(f"AI: {ai_text}")

        # 3. Generate audio using the CSM model
        ai_audio = generator.generate(
            text=ai_text,
            speaker=SPEAKER_ID,
            context=conversation_history,
            max_audio_length_ms=30_000,
        )
        logging.info("Audio generated successfully.")

        #Update conversation history with user input and ai response.
        user_segment = Segment(speaker = SPEAKER_ID, text = 'User Audio', audio = load_audio(user_audio))
        ai_segment =  Segment(speaker = SPEAKER_ID, text = 'AI Audio', audio = ai_audio)
        conversation_history.append(user_segment)
        conversation_history.append(ai_segment)

        #Limit Conversation History
        if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
            conversation_history.pop(0)

        # 4. Watermarking and Audio Conversion
        audio_tensor, wm_sample_rate = watermark(
            generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
        )
        audio_tensor = torchaudio.functional.resample(
            audio_tensor, orig_freq=wm_sample_rate, new_freq=generator.sample_rate
        )

        ai_audio_array = (audio_tensor * 32768).to(torch.int16).cpu().numpy()
        return generator.sample_rate, ai_audio_array

    except Exception as e:
        logging.exception(f"Error in _infer: {e}")
        raise gr.Error(f"An error occurred during processing: {e}")


# --- GRADIO INTERFACE ---

with gr.Blocks() as app:
    gr.Markdown(SPACE_INTRO_TEXT)
    audio_input = gr.Audio(label="Your Input", type="filepath")
    audio_output = gr.Audio(label="AI Response")
    clear_button = gr.Button("Clear Conversation History")
    status_display = gr.Textbox(label="Status", visible=False)

    btn = gr.Button("Generate Response")
    btn.click(infer, inputs=[audio_input], outputs=[audio_output])
    clear_button.click(clear_history, outputs=[status_display])

app.launch(share=False)