Spaces:
Bradarr
/
Running on Zero

File size: 6,950 Bytes
96dc011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from dataclasses import dataclass

import torch
import torch.nn as nn
import torchtune
from torchtune.models import llama3_2


def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder:
    return llama3_2.llama3_2(
        vocab_size=128_256,
        num_layers=16,
        num_heads=32,
        num_kv_heads=8,
        embed_dim=2048,
        max_seq_len=2048,
        intermediate_dim=8192,
        attn_dropout=0.0,
        norm_eps=1e-5,
        rope_base=500_000,
        scale_factor=32,
    )


def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder:
    return llama3_2.llama3_2(
        vocab_size=128_256,
        num_layers=4,
        num_heads=8,
        num_kv_heads=2,
        embed_dim=1024,
        max_seq_len=2048,
        intermediate_dim=8192,
        attn_dropout=0.0,
        norm_eps=1e-5,
        rope_base=500_000,
        scale_factor=32,
    )


FLAVORS = {
    "llama-1B": llama3_2_1B,
    "llama-100M": llama3_2_100M,
}


def _prepare_transformer(model):
    embed_dim = model.tok_embeddings.embedding_dim
    model.tok_embeddings = nn.Identity()
    model.output = nn.Identity()
    return model, embed_dim


def _create_causal_mask(seq_len: int, device: torch.device):
    return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))


def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
    """
    Args:
        mask: (max_seq_len, max_seq_len)
        input_pos: (batch_size, seq_len)

    Returns:
        (batch_size, seq_len, max_seq_len)
    """
    r = mask[input_pos, :]
    return r


def _multinomial_sample_one_no_sync(probs):  # Does multinomial sampling without a cuda synchronization
    q = torch.empty_like(probs).exponential_(1)
    return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int)


def sample_topk(logits: torch.Tensor, topk: int, temperature: float):
    logits = logits / temperature

    filter_value: float = -float("Inf")
    indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
    scores_processed = logits.masked_fill(indices_to_remove, filter_value)
    scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1)
    probs = torch.nn.functional.softmax(scores_processed, dim=-1)

    sample_token = _multinomial_sample_one_no_sync(probs)
    return sample_token


@dataclass
class ModelArgs:
    backbone_flavor: str
    decoder_flavor: str
    text_vocab_size: int
    audio_vocab_size: int
    audio_num_codebooks: int


class Model(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.args = args

        self.backbone, backbone_dim = _prepare_transformer(FLAVORS[args.backbone_flavor]())
        self.decoder, decoder_dim = _prepare_transformer(FLAVORS[args.decoder_flavor]())

        self.text_embeddings = nn.Embedding(args.text_vocab_size, backbone_dim)
        self.audio_embeddings = nn.Embedding(args.audio_vocab_size * args.audio_num_codebooks, backbone_dim)

        self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
        self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
        self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size))

    def setup_caches(self, max_batch_size: int) -> torch.Tensor:
        """Setup KV caches and return a causal mask."""
        dtype = next(self.parameters()).dtype
        device = next(self.parameters()).device

        with device:
            self.backbone.setup_caches(max_batch_size, dtype)
            self.decoder.setup_caches(max_batch_size, dtype, decoder_max_seq_len=self.args.audio_num_codebooks)

        self.register_buffer("backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device))
        self.register_buffer("decoder_causal_mask", _create_causal_mask(self.args.audio_num_codebooks, device))

    def generate_frame(
        self,
        tokens: torch.Tensor,
        tokens_mask: torch.Tensor,
        input_pos: torch.Tensor,
        temperature: float,
        topk: int,
    ) -> torch.Tensor:
        """
        Args:
            tokens: (batch_size, seq_len, audio_num_codebooks+1)
            tokens_mask: (batch_size, seq_len, audio_num_codebooks+1)
            input_pos: (batch_size, seq_len) positions for each token
            mask: (batch_size, seq_len, max_seq_len

        Returns:
            (batch_size, audio_num_codebooks) sampled tokens
        """
        dtype = next(self.parameters()).dtype
        b, s, _ = tokens.size()

        assert self.backbone.caches_are_enabled(), "backbone caches are not enabled"
        curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
        embeds = self._embed_tokens(tokens)
        masked_embeds = embeds * tokens_mask.unsqueeze(-1)
        h = masked_embeds.sum(dim=2)
        h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(dtype=dtype)

        last_h = h[:, -1, :]
        c0_logits = self.codebook0_head(last_h)
        c0_sample = sample_topk(c0_logits, topk, temperature)
        c0_embed = self._embed_audio(0, c0_sample)

        curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1)
        curr_sample = c0_sample.clone()
        curr_pos = torch.arange(0, curr_h.size(1), device=curr_h.device).unsqueeze(0).repeat(curr_h.size(0), 1)

        # Decoder caches must be reset every frame.
        self.decoder.reset_caches()
        for i in range(1, self.args.audio_num_codebooks):
            curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
            decoder_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask).to(
                dtype=dtype
            )
            ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1])
            ci_sample = sample_topk(ci_logits, topk, temperature)
            ci_embed = self._embed_audio(i, ci_sample)

            curr_h = ci_embed
            curr_sample = torch.cat([curr_sample, ci_sample], dim=1)
            curr_pos = curr_pos[:, -1:] + 1

        return curr_sample

    def reset_caches(self):
        self.backbone.reset_caches()
        self.decoder.reset_caches()

    def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
        return self.audio_embeddings(tokens + codebook * self.args.audio_vocab_size)

    def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
        text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2)

        audio_tokens = tokens[:, :, :-1] + (
            self.args.audio_vocab_size * torch.arange(self.args.audio_num_codebooks, device=tokens.device)
        )
        audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape(
            tokens.size(0), tokens.size(1), self.args.audio_num_codebooks, -1
        )

        return torch.cat([audio_embeds, text_embeds], dim=-2)