Spaces:
Bradarr
/
Running on Zero

csm-1b / app.py
Bradarr's picture
Update app.py
107a152 verified
raw
history blame
7.92 kB
import os
import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from generator import Segment, load_csm_1b
from huggingface_hub import hf_hub_download, login
from watermarking import watermark
import whisper
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
from transformers import GenerationConfig
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Authentication and Configuration --- (Moved BEFORE model loading)
try:
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN not found in environment variables.")
login(token=api_key)
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
if not CSM_1B_HF_WATERMARK:
raise ValueError("WATERMARK_KEY not found or invalid in environment variables.")
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 120))
except (ValueError, TypeError) as e:
logging.error(f"Configuration error: {e}")
raise
SPACE_INTRO_TEXT = """
# Sesame CSM 1B - Conversational Demo
This demo allows you to have a conversation with Sesame CSM 1B, leveraging Whisper for speech-to-text and Gemma for generating responses. This is an experimental integration and may require significant resources.
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
"""
# --- Model Loading --- (Moved INSIDE infer function)
# --- Constants --- (Constants can stay outside)
SPEAKER_ID = 0
MAX_CONTEXT_SEGMENTS = 1
MAX_GEMMA_LENGTH = 150
# --- Global Conversation History ---
conversation_history = []
# --- Helper Functions ---
def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_model
try:
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
result = whisper_model.transcribe(audio)
return result["text"]
except Exception as e:
logging.error(f"Whisper transcription error: {e}")
return "Error: Could not transcribe audio."
def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
try:
# Gemma 3 chat template format
messages = [{"role": "user", "content": text}]
input = tokenizer_gemma.apply_chat_template(messages, return_tensors="pt").to(device)
generation_config = GenerationConfig(
max_new_tokens=MAX_GEMMA_LENGTH,
early_stopping=True,
)
generated_output = model_gemma.generate(input, generation_config=generation_config)
return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
#input_text = "Reapond to the users prompt: " + text
#input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
#generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
#return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
except Exception as e:
logging.error(f"Gemma response generation error: {e}")
return "I'm sorry, I encountered an error generating a response."
def load_audio(audio_path: str, generator) -> torch.Tensor: #Pass generator
try:
audio_tensor, sample_rate = torchaudio.load(audio_path)
audio_tensor = audio_tensor.mean(dim=0)
if sample_rate != generator.sample_rate:
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=generator.sample_rate)
return audio_tensor
except Exception as e:
logging.error(f"Audio loading error: {e}")
raise gr.Error("Could not load or process the audio file.") from e
def clear_history():
global conversation_history
conversation_history = []
logging.info("Conversation history cleared.")
return "Conversation history cleared."
# --- Main Inference Function ---
@spaces.GPU(duration=gpu_timeout) # Decorator FIRST
def infer(user_audio) -> tuple[int, np.ndarray]:
# --- CUDA Availability Check (INSIDE infer) ---
if torch.cuda.is_available():
print(f"CUDA is available! Device count: {torch.cuda.device_count()}")
print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
print(f"CUDA version: {torch.version.cuda}")
device = "cuda"
else:
print("CUDA is NOT available. Using CPU.") # Use CPU, don't raise
device = "cpu"
try:
# --- Model Loading (INSIDE infer, after device is set) ---
model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
generator = load_csm_1b(model_path, device)
logging.info("Sesame CSM 1B loaded successfully.")
whisper_model = whisper.load_model("small.en", device=device)
logging.info("Whisper model loaded successfully.")
tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-it")
model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-it").to(device)
logging.info("Gemma 3 1B pt model loaded successfully.")
if not user_audio:
raise ValueError("No audio input received.")
return _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device) #Pass all models
except Exception as e:
logging.exception(f"Inference error: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
def _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device) -> tuple[int, np.ndarray]:
global conversation_history
try:
user_text = transcribe_audio(user_audio, whisper_model) # Pass whisper_model
logging.info(f"User: {user_text}")
ai_text = generate_response(user_text, model_gemma, tokenizer_gemma, device) # Pass model and tokenizer
logging.info(f"AI: {ai_text}")
try:
ai_audio = generator.generate(
text=ai_text,
speaker=SPEAKER_ID,
context=conversation_history,
max_audio_length_ms=10_000,
)
logging.info("Audio generated successfully.")
except Exception as e:
logging.error(f"Sesame response generation error: {e}")
raise gr.Error(f"Sesame response generation error: {e}")
user_segment = Segment(speaker = 1, text = user_text, audio = load_audio(user_audio, generator)) #Pass Generator
ai_segment = Segment(speaker = SPEAKER_ID, text = ai_text, audio = ai_audio)
conversation_history.append(user_segment)
conversation_history.append(ai_segment)
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
conversation_history.pop(0)
audio_tensor, wm_sample_rate = watermark(
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
)
audio_tensor = torchaudio.functional.resample(
audio_tensor, orig_freq=wm_sample_rate, new_freq=generator.sample_rate
)
ai_audio_array = (audio_tensor * 32768).to(torch.int16).cpu().numpy()
return generator.sample_rate, ai_audio_array
except Exception as e:
logging.exception(f"Error in _infer: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
# --- Gradio Interface ---
with gr.Blocks() as app:
gr.Markdown(SPACE_INTRO_TEXT)
audio_input = gr.Audio(label="Your Input", type="filepath")
audio_output = gr.Audio(label="AI Response")
clear_button = gr.Button("Clear Conversation History")
status_display = gr.Textbox(label="Status", visible=False)
btn = gr.Button("Generate Response")
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
clear_button.click(clear_history, outputs=[status_display])
app.launch(ssr_mode=False)