Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from transformers import GenerationConfig
|
|
15 |
# Configure logging
|
16 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
17 |
|
18 |
-
# --- Authentication and Configuration ---
|
19 |
try:
|
20 |
api_key = os.getenv("HF_TOKEN")
|
21 |
if not api_key:
|
@@ -39,9 +39,7 @@ This demo allows you to have a conversation with Sesame CSM 1B, leveraging Whisp
|
|
39 |
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
|
40 |
"""
|
41 |
|
42 |
-
# ---
|
43 |
-
|
44 |
-
# --- Constants --- (Constants can stay outside)
|
45 |
SPEAKER_ID = 0
|
46 |
MAX_CONTEXT_SEGMENTS = 3
|
47 |
MAX_GEMMA_LENGTH = 128
|
@@ -49,6 +47,45 @@ MAX_GEMMA_LENGTH = 128
|
|
49 |
# --- Global Conversation History ---
|
50 |
conversation_history = []
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# --- Helper Functions ---
|
53 |
|
54 |
def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_model
|
@@ -85,10 +122,6 @@ def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: #
|
|
85 |
assistant_response = decoded_output[start_index:].strip()
|
86 |
return assistant_response
|
87 |
return decoded_output
|
88 |
-
#input_text = "Reapond to the users prompt: " + text
|
89 |
-
#input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
|
90 |
-
#generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
|
91 |
-
#return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
|
92 |
except Exception as e:
|
93 |
logging.error(f"Gemma response generation error: {e}")
|
94 |
return "I'm sorry, I encountered an error generating a response."
|
@@ -116,25 +149,26 @@ def clear_history():
|
|
116 |
def infer(user_audio) -> tuple[int, np.ndarray]:
|
117 |
# --- CUDA Availability Check (INSIDE infer) ---
|
118 |
if torch.cuda.is_available():
|
119 |
-
print(f"CUDA is available! Device count: {torch.cuda.device_count()}")
|
120 |
-
print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
|
121 |
-
print(f"CUDA version: {torch.version.cuda}")
|
122 |
device = "cuda"
|
|
|
123 |
else:
|
124 |
-
print("CUDA is NOT available. Using CPU.") # Use CPU, don't raise
|
125 |
device = "cpu"
|
|
|
|
|
126 |
|
127 |
try:
|
128 |
# --- Model Loading (INSIDE infer, after device is set) ---
|
129 |
-
|
130 |
-
generator = load_csm_1b(
|
131 |
logging.info("Sesame CSM 1B loaded successfully.")
|
132 |
|
133 |
-
|
134 |
-
|
|
|
135 |
|
136 |
-
|
137 |
-
|
|
|
138 |
logging.info("Gemma 3 1B pt model loaded successfully.")
|
139 |
|
140 |
if not user_audio:
|
|
|
15 |
# Configure logging
|
16 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
17 |
|
18 |
+
# --- Authentication and Configuration ---
|
19 |
try:
|
20 |
api_key = os.getenv("HF_TOKEN")
|
21 |
if not api_key:
|
|
|
39 |
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
|
40 |
"""
|
41 |
|
42 |
+
# --- Constants ---
|
|
|
|
|
43 |
SPEAKER_ID = 0
|
44 |
MAX_CONTEXT_SEGMENTS = 3
|
45 |
MAX_GEMMA_LENGTH = 128
|
|
|
47 |
# --- Global Conversation History ---
|
48 |
conversation_history = []
|
49 |
|
50 |
+
# --- Model Downloading (PRE-DOWNLOAD) ---
|
51 |
+
|
52 |
+
# Download Sesame CSM 1B
|
53 |
+
csm_1b_model_path = "csm_1b_ckpt.pt" # Local path
|
54 |
+
try:
|
55 |
+
if not os.path.exists(csm_1b_model_path):
|
56 |
+
hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt", local_dir=".", local_dir_use_symlinks=False)
|
57 |
+
os.rename("ckpt.pt", csm_1b_model_path) # Rename to avoid confusion
|
58 |
+
logging.info("Sesame CSM 1B model downloaded.")
|
59 |
+
else:
|
60 |
+
logging.info("Sesame CSM 1B model already downloaded.")
|
61 |
+
except Exception as e:
|
62 |
+
logging.error(f"Error downloading Sesame CSM 1B: {e}")
|
63 |
+
raise
|
64 |
+
|
65 |
+
# Download Whisper (using the built-in download mechanism)
|
66 |
+
whisper_model_name = "small.en"
|
67 |
+
try:
|
68 |
+
whisper.load_model(whisper_model_name) # This downloads if not already present
|
69 |
+
logging.info(f"Whisper model '{whisper_model_name}' downloaded/loaded.")
|
70 |
+
except Exception as e:
|
71 |
+
logging.error(f"Error downloading Whisper model: {e}")
|
72 |
+
raise
|
73 |
+
|
74 |
+
# Download Gemma 3 1B (Tokenizer and Model)
|
75 |
+
gemma_repo_id = "google/gemma-3-1b-it"
|
76 |
+
gemma_local_path = "gemma_model" # Using a directory
|
77 |
+
try:
|
78 |
+
if not os.path.exists(gemma_local_path):
|
79 |
+
tokenizer_gemma = AutoTokenizer.from_pretrained(gemma_repo_id, cache_dir=gemma_local_path) #downloads
|
80 |
+
model_gemma = AutoModelForCausalLM.from_pretrained(gemma_repo_id, cache_dir=gemma_local_path) #downloads
|
81 |
+
logging.info("Gemma 3 1B model and tokenizer downloaded.")
|
82 |
+
else:
|
83 |
+
logging.info("Gemma 3 1B model and tokenizer already downloaded.")
|
84 |
+
except Exception as e:
|
85 |
+
logging.error(f"Error downloading Gemma 3 1B: {e}")
|
86 |
+
raise
|
87 |
+
|
88 |
+
|
89 |
# --- Helper Functions ---
|
90 |
|
91 |
def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_model
|
|
|
122 |
assistant_response = decoded_output[start_index:].strip()
|
123 |
return assistant_response
|
124 |
return decoded_output
|
|
|
|
|
|
|
|
|
125 |
except Exception as e:
|
126 |
logging.error(f"Gemma response generation error: {e}")
|
127 |
return "I'm sorry, I encountered an error generating a response."
|
|
|
149 |
def infer(user_audio) -> tuple[int, np.ndarray]:
|
150 |
# --- CUDA Availability Check (INSIDE infer) ---
|
151 |
if torch.cuda.is_available():
|
|
|
|
|
|
|
152 |
device = "cuda"
|
153 |
+
logging.info(f"CUDA is available! Using device: {torch.cuda.get_device_name(0)}")
|
154 |
else:
|
|
|
155 |
device = "cpu"
|
156 |
+
logging.info("CUDA is NOT available. Using CPU.")
|
157 |
+
|
158 |
|
159 |
try:
|
160 |
# --- Model Loading (INSIDE infer, after device is set) ---
|
161 |
+
# Load Sesame CSM 1B (from local file)
|
162 |
+
generator = load_csm_1b(csm_1b_model_path, device)
|
163 |
logging.info("Sesame CSM 1B loaded successfully.")
|
164 |
|
165 |
+
# Load Whisper (from local cache or downloaded)
|
166 |
+
whisper_model = whisper.load_model(whisper_model_name, device=device)
|
167 |
+
logging.info(f"Whisper model '{whisper_model_name}' loaded successfully.")
|
168 |
|
169 |
+
# Load Gemma (from local cache)
|
170 |
+
tokenizer_gemma = AutoTokenizer.from_pretrained(gemma_local_path)
|
171 |
+
model_gemma = AutoModelForCausalLM.from_pretrained(gemma_local_path).to(device)
|
172 |
logging.info("Gemma 3 1B pt model loaded successfully.")
|
173 |
|
174 |
if not user_audio:
|