Spaces:
Bradarr
/
Running on Zero

Bradarr commited on
Commit
93d52a2
·
verified ·
1 Parent(s): 73cb637

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -5
app.py CHANGED
@@ -62,10 +62,21 @@ def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_mod
62
 
63
  def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
64
  try:
65
- input_text = "Reapond to the users prompt: " + text
66
- input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
67
- generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
 
 
 
 
 
 
68
  return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
 
 
 
 
 
69
  except Exception as e:
70
  logging.error(f"Gemma response generation error: {e}")
71
  return "I'm sorry, I encountered an error generating a response."
@@ -144,8 +155,8 @@ def _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, d
144
  raise gr.Error(f"Sesame response generation error: {e}")
145
 
146
 
147
- user_segment = Segment(speaker = SPEAKER_ID, text = 'User Audio', audio = load_audio(user_audio, generator)) #Pass Generator
148
- ai_segment = Segment(speaker = SPEAKER_ID, text = 'AI Audio', audio = ai_audio)
149
  conversation_history.append(user_segment)
150
  conversation_history.append(ai_segment)
151
 
 
62
 
63
  def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
64
  try:
65
+ # Gemma 3 chat template format
66
+ messages = [{"role": "user", "content": text}]
67
+ input = tokenizer_gemma.apply_chat_template(messages, return_tensors="pt").to(device)
68
+ generation_config = GenerationConfig(
69
+ max_new_tokens=MAX_GEMMA_LENGTH,
70
+ early_stopping=True,
71
+ )
72
+
73
+ generated_output = model_gemma.generate(input, generation_config=generation_config)
74
  return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
75
+
76
+ #input_text = "Reapond to the users prompt: " + text
77
+ #input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
78
+ #generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
79
+ #return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
80
  except Exception as e:
81
  logging.error(f"Gemma response generation error: {e}")
82
  return "I'm sorry, I encountered an error generating a response."
 
155
  raise gr.Error(f"Sesame response generation error: {e}")
156
 
157
 
158
+ user_segment = Segment(speaker = 1, text = user_text, audio = load_audio(user_audio, generator)) #Pass Generator
159
+ ai_segment = Segment(speaker = SPEAKER_ID, text = ai_text, audio = ai_audio)
160
  conversation_history.append(user_segment)
161
  conversation_history.append(ai_segment)
162