Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import collections
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
from safetensors.torch import serialize_file
|
7 |
+
import requests
|
8 |
+
import tempfile
|
9 |
+
|
10 |
+
def download_file(url, local_path):
|
11 |
+
"""Download a file from a URL to a local path."""
|
12 |
+
response = requests.get(url, stream=True)
|
13 |
+
response.raise_for_status()
|
14 |
+
with open(local_path, 'wb') as f:
|
15 |
+
for chunk in response.iter_content(chunk_size=8192):
|
16 |
+
f.write(chunk)
|
17 |
+
return local_path
|
18 |
+
|
19 |
+
def rename_key(rename, name):
|
20 |
+
for k, v in rename.items():
|
21 |
+
if k in name:
|
22 |
+
name = name.replace(k, v)
|
23 |
+
return name
|
24 |
+
|
25 |
+
def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=[]):
|
26 |
+
loaded: collections.OrderedDict = torch.load(pt_filename, map_location="cpu")
|
27 |
+
if "state_dict" in loaded:
|
28 |
+
loaded = loaded["state_dict"]
|
29 |
+
|
30 |
+
kk = list(loaded.keys())
|
31 |
+
version = 4
|
32 |
+
for x in kk:
|
33 |
+
if "ln_x" in x:
|
34 |
+
version = max(5, version)
|
35 |
+
if "gate.weight" in x:
|
36 |
+
version = max(5.1, version)
|
37 |
+
if int(version) == 5 and "att.time_decay" in x:
|
38 |
+
if len(loaded[x].shape) > 1:
|
39 |
+
if loaded[x].shape[1] > 1:
|
40 |
+
version = max(5.2, version)
|
41 |
+
if "time_maa" in x:
|
42 |
+
version = max(6, version)
|
43 |
+
|
44 |
+
print(f"Model detected: v{version:.1f}")
|
45 |
+
|
46 |
+
if version == 5.1:
|
47 |
+
_, n_emb = loaded["emb.weight"].shape
|
48 |
+
for k in kk:
|
49 |
+
if "time_decay" in k or "time_faaaa" in k:
|
50 |
+
loaded[k] = loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
for k in kk:
|
54 |
+
new_k = rename_key(rename, k).lower()
|
55 |
+
v = loaded[k].half()
|
56 |
+
del loaded[k]
|
57 |
+
for transpose_name in transpose_names:
|
58 |
+
if transpose_name in new_k:
|
59 |
+
dims = len(v.shape)
|
60 |
+
v = v.transpose(dims - 2, dims - 1)
|
61 |
+
break
|
62 |
+
print(f"{new_k}\t{v.shape}\t{v.dtype}")
|
63 |
+
loaded[new_k] = {
|
64 |
+
"dtype": str(v.dtype).split(".")[-1],
|
65 |
+
"shape": v.shape,
|
66 |
+
"data": v.numpy().tobytes(),
|
67 |
+
}
|
68 |
+
|
69 |
+
os.makedirs(os.path.dirname(sf_filename), exist_ok=True)
|
70 |
+
serialize_file(loaded, sf_filename, metadata={"format": "pt"})
|
71 |
+
return sf_filename
|
72 |
+
|
73 |
+
def process_model(url):
|
74 |
+
"""Process the model URL and return a downloadable safetensors file."""
|
75 |
+
try:
|
76 |
+
# Create temporary files
|
77 |
+
with tempfile.NamedTemporaryFile(suffix=".pth", delete=False) as temp_pth:
|
78 |
+
pth_path = temp_pth.name
|
79 |
+
with tempfile.NamedTemporaryFile(suffix=".safetensors", delete=False) as temp_sf:
|
80 |
+
sf_path = temp_sf.name
|
81 |
+
|
82 |
+
# Download the .pth file from the URL
|
83 |
+
download_file(url, pth_path)
|
84 |
+
|
85 |
+
# Conversion parameters
|
86 |
+
rename = {"time_faaaa": "time_first", "time_maa": "time_mix", "lora_A": "lora.0", "lora_B": "lora.1"}
|
87 |
+
transpose_names = [
|
88 |
+
"time_mix_w1", "time_mix_w2", "time_decay_w1", "time_decay_w2",
|
89 |
+
"w1", "w2", "a1", "a2", "g1", "g2", "v1", "v2",
|
90 |
+
"time_state", "lora.0"
|
91 |
+
]
|
92 |
+
|
93 |
+
# Convert the file
|
94 |
+
converted_file = convert_file(pth_path, sf_path, rename, transpose_names)
|
95 |
+
|
96 |
+
# Clean up the temporary .pth file
|
97 |
+
os.remove(pth_path)
|
98 |
+
|
99 |
+
return converted_file
|
100 |
+
except Exception as e:
|
101 |
+
# Clean up temporary files in case of error
|
102 |
+
if os.path.exists(pth_path):
|
103 |
+
os.remove(pth_path)
|
104 |
+
if os.path.exists(sf_path):
|
105 |
+
os.remove(sf_path)
|
106 |
+
raise gr.Error(f"Error processing the model: {str(e)}")
|
107 |
+
|
108 |
+
# Gradio interface
|
109 |
+
with gr.Blocks(title="PTH to Safetensors Converter") as demo:
|
110 |
+
gr.Markdown("# PTH to Safetensors Converter")
|
111 |
+
gr.Markdown("Enter the URL to a `.pth` model file hosted on Hugging Face to convert it to `.safetensors` format.")
|
112 |
+
|
113 |
+
url_input = gr.Textbox(label="Model URL", placeholder="https://huggingface.co/.../model.pth")
|
114 |
+
convert_btn = gr.Button("Convert")
|
115 |
+
output_file = gr.File(label="Download Converted Safetensors File")
|
116 |
+
|
117 |
+
convert_btn.click(
|
118 |
+
fn=process_model,
|
119 |
+
inputs=url_input,
|
120 |
+
outputs=output_file
|
121 |
+
)
|
122 |
+
|
123 |
+
demo.launch()
|