Spaces:
Running
Running
import base64 | |
from collections import Counter | |
import graphviz | |
import penman | |
from mbart_amr.data.linearization import linearized2penmanstr | |
from penman.models.noop import NoOpModel | |
import streamlit as st | |
from transformers import LogitsProcessorList | |
from utils import get_resources, LANGUAGES, translate | |
import streamlit as st | |
st.set_page_config( | |
page_title="Text-to-AMR demo by Bram Vanroy", | |
page_icon="π©βπ»" | |
) | |
st.title("π©βπ» Multilingual text to AMR α΅α΅α΅α΅") | |
with st.form("input data"): | |
text_col, lang_col = st.columns((4, 1)) | |
text = text_col.text_input(label="Input text") | |
src_lang = lang_col.selectbox(label="Language", options=list(LANGUAGES.keys()), index=0) | |
submitted = st.form_submit_button("Submit") | |
error_ct = st.empty() | |
if submitted: | |
text = text.strip() | |
if not text: | |
error_ct.error("Text cannot be empty!", icon="β οΈ") | |
else: | |
error_ct.info("Generating abstract meaning representation (AMR)...", icon="π»") | |
multilingual = src_lang != "English" | |
model, tokenizer, logitsprocessor = get_resources(multilingual) | |
gen_kwargs = { | |
"max_length": model.config.max_length, | |
"num_beams": model.config.num_beams, | |
"logits_processor": LogitsProcessorList([logitsprocessor]) | |
} | |
linearized = translate(text, src_lang, model, tokenizer, **gen_kwargs) | |
penman_str = linearized2penmanstr(linearized) | |
error_ct.empty() | |
try: | |
graph = penman.decode(penman_str, model=NoOpModel()) | |
except Exception as exc: | |
st.write(f"The generated graph is not valid so it cannot be visualized correctly. Below is the closest attempt" | |
f" to a valid graph but note that this is invalid Penman.") | |
st.code(penman_str) | |
with st.expander("Error trace"): | |
st.write(exc) | |
else: | |
visualized = graphviz.Digraph(node_attr={"color": "#3aafa9", "style": "rounded,filled", "shape": "box", | |
"fontcolor": "white"}) | |
# Count which names occur multiple times, e.g. t/talk-01 t2/talk-01 | |
nodename_c = Counter([item[2] for item in graph.triples if item[1] == ":instance"]) | |
# Generated initial nodenames for each variable, e.g. {"t": "talk-01", "t2": "talk-01"} | |
nodenames = {item[0]: item[2] for item in graph.triples if item[1] == ":instance"} | |
# Modify nodenames, so that the values are unique, e.g. {"t": "talk-01 (1)", "t2": "talk-01 (2)"} | |
# but only the value occurs more than once | |
nodename_str_c = Counter() | |
for varname in nodenames: | |
nodename = nodenames[varname] | |
if nodename_c[nodename] > 1: | |
nodename_str_c[nodename] += 1 | |
nodenames[varname] = f"{nodename} ({nodename_str_c[nodename]})" | |
def get_node_name(item: str): | |
return nodenames[item] if item in nodenames else item | |
try: | |
for triple in graph.triples: | |
if triple[1] == ":instance": | |
continue | |
else: | |
visualized.edge(get_node_name(triple[0]), get_node_name(triple[2]), label=triple[1]) | |
except Exception as exc: | |
st.write("The generated graph is not valid so it cannot be visualized correctly. Below is the closest attempt" | |
" to a valid graph but note that this is probably invalid Penman.") | |
st.code(penman_str) | |
st.write("The initial linearized output of the model was:") | |
st.code(linearized) | |
with st.expander("Error trace"): | |
st.write(exc) | |
else: | |
st.subheader("Graph visualization") | |
st.graphviz_chart(visualized, use_container_width=True) | |
# Download link | |
def create_download_link(img_bytes: bytes): | |
encoded = base64.b64encode(img_bytes).decode("utf-8") | |
return f'<a href="data:image/png;charset=utf-8;base64,{encoded}" download="amr-graph.png">Download graph</a>' | |
img = visualized.pipe(format="png") | |
st.markdown(create_download_link(img), unsafe_allow_html=True) | |
# Additional info | |
st.subheader("Model output and Penman graph") | |
st.write("The linearized output of the model (after some post-processing) is:") | |
st.code(linearized) | |
st.write("When converted into Penman, it looks like this:") | |
st.code(penman.encode(graph)) | |
######################## | |
# Information, socials # | |
######################## | |
st.header("SignON π€") | |
st.markdown(""" | |
<div style="display: flex"> | |
<img style="margin-right: 1em" alt="SignON logo" src="https://signon-project.eu/wp-content/uploads/2021/05/SignOn_Favicon_500x500px.png" width=64 height=64> | |
<p><a href="https://signon-project.eu/" target="_blank" title="SignON homepage">SignON</a> aims to bridge the | |
communication gap between deaf, hard-of-hearing and hearing people through an accessible translation service. | |
This service will translate between languages and modalities with particular attention for sign languages.</p> | |
</div>""", unsafe_allow_html=True) | |
st.markdown("""[Abstract meaning representation](https://aclanthology.org/W13-2322/) (AMR) | |
is a semantic framework to describe meaning relations of sentences as graphs. In the SignON project, AMR is used as | |
an interlingua to translate between modalities and languages. To this end, I built MBART models for the task of | |
generating linearized AMR representations from an input sentence, which is show-cased in this demo. | |
""") | |
st.header("Contact βοΈ") | |
st.markdown("Would you like additional functionality in the demo, do you have questions, or just want to get in touch?" | |
" Give me a shout on [Twitter](https://twitter.com/BramVanroy)" | |
" or add me on [LinkedIn](https://www.linkedin.com/in/bramvanroy/)!") | |