Spaces:
Runtime error
Runtime error
File size: 11,716 Bytes
11e0c2d 6b4e770 11e0c2d f71e135 11e0c2d 8517ebc 11e0c2d a1211da 11e0c2d 5bf37c5 11e0c2d a1211da 11e0c2d 09af1dd 11e0c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import streamlit as st
import cv2
import json
import os
import re
from datetime import datetime
from io import BytesIO
import requests
import shutil
import vk_api
from bs4 import BeautifulSoup
from deepface import DeepFace
from googletrans import Translator
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import Image, SimpleDocTemplate, Table, TableStyle
from ultralytics import YOLO
with open('config.json', 'r') as f:
config = json.load(f)
FACE_DET_TRESH = config['FACE_DET_TRESH']
FACE_DIST_TRESH = config['FACE_DIST_TRESH']
YOLO_WEIGHTS_URL = config['YOLO_WEIGHTS_URL']
AVATARS_URI = config['AVATARS_URI']
APP_NAME = config['APP_NAME']
APP_DESCRIPTION = config['APP_DESCRIPTION']
def load_detector():
yolo_weights_filename = os.path.basename(YOLO_WEIGHTS_URL)
if not os.path.exists(yolo_weights_filename):
response = requests.get(YOLO_WEIGHTS_URL)
with open(yolo_weights_filename, "wb") as file:
file.write(response.content)
return YOLO(yolo_weights_filename)
model = load_detector()
styles = getSampleStyleSheet()
style_table = TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.grey),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 14),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black),
])
def parse_album(data):
album_info = data['NGRX_STATE']['game']['info']['data']['photoSetUrl']
album_info = album_info.split("-")[-1].split("_")
owner_id = - int(album_info[0])
album_id = int(album_info[1])
return owner_id, album_id
def get_photos(owner_id, album_id, vk):
offset = 0
total_count = float('inf')
count_per_request = 50
output = []
while offset < total_count:
params = {
'owner_id': owner_id,
'album_id': album_id,
'count': count_per_request,
'offset': offset,
'extended': '1'
}
response = vk.photos.get(**params)
for item in response['items']:
max_item = max(item['sizes'], key=lambda item: item['height'])
output.append(max_item['url'])
total_count = response['count']
offset += count_per_request
return output
def download_images(photos, players):
current_datetime = datetime.now()
folder_name = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
os.mkdir(folder_name)
players_path = os.path.join(folder_name, 'players')
photos_path = os.path.join(folder_name, 'photos')
temp_path = os.path.join(folder_name, 'temp')
os.mkdir(players_path)
os.mkdir(photos_path)
os.mkdir(temp_path)
update_progress(0, 'Downloading photos...')
for i, photo_url in enumerate(photos):
filename = f'{i}.jpg'
response = requests.get(photo_url)
with open(os.path.join(photos_path, filename), "wb") as file:
file.write(response.content)
update_progress((i+1)/len(photos), 'Downloading photos...')
for team_state in players.keys():
update_progress(0, f"Downloading {team_state} players' avatars...")
for i, player in enumerate(players[team_state]):
filename = f"{player['id']}.jpg"
response = requests.get(player['avatar_url'])
with open(os.path.join(players_path, filename), "wb") as file:
file.write(response.content)
update_progress((i+1)/len(players[team_state]), f"Downloading {team_state} players' avatars...")
return {
'photos_path': photos_path,
'players_path': players_path,
'temp_path': temp_path,
'folder_name': folder_name
}
def find_photos(data, vk):
pattern = re.compile('<script id="axl-desktop-state" type="application/json">(.+?)</script>')
script_content = pattern.search(data).group(1).replace('&q;', '"')
data = json.loads(script_content)
owner_id, album_id = parse_album(data)
return get_photos(owner_id, album_id, vk)
def translate(text):
translator = Translator()
output = translator.translate(text, src='ru', dest='en')
return output.text
def get_players(data):
output = {}
team_states = ['home', 'away']
soup = BeautifulSoup(data, 'lxml')
for team_state in team_states:
update_progress(0, f'Getting information about {team_state} players...')
output[team_state] = []
player_roots = soup.find_all("div", {"class": f"{team_state} ng-star-inserted"})
for i, player_root in enumerate(player_roots):
player_info = player_root.find("a", {"class": "wrapper ng-star-inserted"})
id = re.findall(r'\d+', player_info['href'])[-1]
avatar_url = AVATARS_URI.replace("PLAYER_ID", id)
name = player_info.find("span", {"class": "name"}).get_text()
name = translate(name)
position = player_info.find("span", {"class": "position"}).get_text()
output[team_state].append({
'id': id,
'name': name,
'position': position,
'avatar_url': avatar_url
})
update_progress((i+1)/len(player_roots), f'Getting information about {team_state} players...')
return output
def load_players_avatars(players, images_path, face_det_tresh):
for team_state in players.keys():
update_progress(0, f'Reading avatars of {team_state} team...')
for i, player in enumerate(players[team_state]):
image_name = f"{player['id']}.jpg"
player['image'] = read_image_from_path(os.path.join(images_path, image_name))
faces = find_faces(player['image'], face_det_tresh)
if faces:
player['face'] = faces[0]
update_progress((i+1)/len(players[team_state]), f'Reading avatars of {team_state} team...')
return players
def find_distance(base_face, check_face):
result = DeepFace.verify(base_face, check_face, enforce_detection=False)
return result['distance']
def read_image_from_path(path):
return cv2.imread(path)
def read_images_from_path(path):
images = []
files = os.listdir(path)
update_progress(0, 'Reading photos...')
for i, filename in enumerate(files):
if filename.endswith(".jpg"):
image = read_image_from_path(os.path.join(path, filename))
if image is not None:
images.append(image)
update_progress((i+1)/len(files), 'Reading photos...')
return images
def cv2_to_reportlab(cv2_image):
buffer = BytesIO()
_, buffer = cv2.imencode(".jpg", cv2_image)
io_buf = BytesIO(buffer)
return Image(io_buf)
def find_faces(image, face_det_tresh):
outputs = model(image)
faces = []
for box in outputs[0].boxes:
if float(box.conf) >= face_det_tresh:
x, y, w, h = [int(coord) for coord in box.xywh[0]]
x_center, y_center = x + w / 2, y + h / 2
x1 = int(x_center - w)
y1 = int(y_center - h)
crop_img = image[y1:y1+h, x1:x1+w]
faces.append(crop_img)
return faces
def is_face_exists(players, face, face_dist_tresh):
for team_state in players.keys():
for player in players[team_state]:
if 'face' in player:
distance = find_distance(player['face'], face)
if distance <= face_dist_tresh:
return player['id'], player['face']
return None, None
def add_players_table(elements, players):
data = [
["Player ID", "Name", "Position", "Avatar", "Face"]
]
for team_state in players.keys():
update_progress(0, f"Creating dump of {team_state}'s squad...")
for i, player in enumerate(players[team_state]):
face = cv2_to_reportlab(player['face']) if 'face' in player else None
avatar = cv2_to_reportlab(player['image'])
line = [
player['id'],
player['name'],
player['position'],
avatar,
face
]
data.append(line)
update_progress((i+1)/len(players[team_state]), f"Creating dump of {team_state}'s squad...")
table = Table(data)
table.setStyle(style_table)
elements.append(table)
return elements
def check_faces(elements, photos, players, face_det_tresh, face_dist_tresh):
data = [
["Face", "Player ID", "Player Face"]
]
update_progress(0, 'Comparing faces...')
for i, photo in enumerate(photos):
faces = find_faces(photo, face_det_tresh)
for j, face in enumerate(faces):
player_id, player_face = is_face_exists(players, face, face_dist_tresh)
face = cv2_to_reportlab(face)
tmp_arr = [face, player_id]
if player_face is not None:
player_face = cv2_to_reportlab(player_face)
tmp_arr.append(player_face)
data.append(tmp_arr)
update_progress((j+1)/len(faces), f'[{i + 1}/{len(photos)}] Comparing faces...')
table = Table(data)
table.setStyle(style_table)
elements.append(table)
return elements
def update_progress(percent, description):
progress_bar.progress(percent)
progress_status_text.text(description)
def process(token, afl_link, face_dist_tresh, face_det_tresh):
update_progress(0, 'Connecting to vk...')
vk_session = vk_api.VkApi(token=token)
vk = vk_session.get_api()
update_progress(100, 'Connected to vk')
update_progress(0, 'Getting information from afl...')
response = requests.get(afl_link)
update_progress(100, 'Got information from afl')
update_progress(0, 'Getting information about photos...')
photos = find_photos(response.text, vk)
update_progress(100, 'Got information about photos')
players = get_players(response.text)
result = download_images(photos, players)
photos = read_images_from_path(result['photos_path'])
players = load_players_avatars(players, result['players_path'], face_det_tresh)
table_file = os.path.join(result['temp_path'], 'table.pdf')
doc = SimpleDocTemplate(table_file, pagesize=letter)
elements = []
elements = check_faces(elements, photos, players, face_det_tresh, face_dist_tresh)
elements = add_players_table(elements, players)
doc.build(elements)
with open(table_file, 'rb') as file:
pdf_bytes = file.read()
shutil.rmtree(result['folder_name'])
return pdf_bytes
st.set_page_config(page_title=APP_NAME)
st.title(APP_NAME)
st.write(APP_DESCRIPTION)
access_token = st.text_input("Your VK API access token", help='You can obtain your token from https://vkhost.github.io/')
afl_url = st.text_input("AFL url", help='Example: https://afl.ru/football/afl-moscow-8x8/afl-cup-krasnaya-presnya-3097/matches/463676')
face_det_tresh = st.slider('face_det_tresh:', 0.0, 1.0, FACE_DET_TRESH, 0.01, help='Adjust the threshold value for face detection.')
face_dist_tresh = st.slider('face_dist_tresh:', 0.0, 1.0, FACE_DIST_TRESH, 0.01, help='Adjust the threshold to determine the minimum acceptable distance between faces.')
button_clicked = st.button("Process")
if button_clicked:
progress_bar = st.progress(0)
progress_status_text = st.empty()
pdf_bytes = process(access_token, afl_url, face_dist_tresh, face_det_tresh)
st.download_button(label='Download PDF', data=pdf_bytes, file_name='output.pdf') |