File size: 1,890 Bytes
037a015
b42ac71
 
 
 
 
 
 
 
 
 
037a015
 
 
 
 
 
 
 
 
b42ac71
 
 
 
 
 
 
 
 
 
 
 
 
037a015
 
b42ac71
 
037a015
b42ac71
 
 
 
037a015
b42ac71
037a015
 
 
b42ac71
037a015
 
b42ac71
037a015
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    load_in_4bit=True,  # Ensure this matches your model's quantization
    device_map="auto"   # Automatically allocate model layers to GPUs
)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # Combine system message and chat history
    chat_history = f"{system_message}\n"
    for user_msg, bot_reply in history:
        chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n"
    chat_history += f"User: {message}\nAssistant:"

    # Tokenize the input
    inputs = tokenizer(chat_history, return_tensors="pt", truncation=True).to("cuda")

    # Generate response
    outputs = model.generate(
        inputs["input_ids"],
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        pad_token_id=tokenizer.eos_token_id
    )

    # Decode and format the output
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = response[len(chat_history):].strip()  # Remove input context from output
    return response

# Define the Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ],
)

if __name__ == "__main__":
    demo.launch()