Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
from transformers import AutoModel, AutoTokenizer | |
from transformers.adapters import AutoAdapterModel | |
from transformers import AutoTokenizer | |
model_name = "unsloth/Meta-Llama-3.1-8B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Load the base model with adapters | |
model = AutoAdapterModel.from_pretrained(model_name) | |
model.load_adapter("Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Combine system message and chat history | |
chat_history = f"{system_message}\n" | |
for user_msg, bot_reply in history: | |
chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n" | |
chat_history += f"User: {message}\nAssistant:" | |
# Tokenize the input | |
inputs = tokenizer(chat_history, return_tensors="pt", truncation=True).to("cuda") | |
# Generate response | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode and format the output | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = response[len(chat_history):].strip() # Remove input context from output | |
return response | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |