Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from unsloth import FastLanguageModel | |
from transformers import TextStreamer | |
# Configuration Variables | |
model_name = "unsloth/Llama-3.2-3B-Instruct-bnb-4bit" # Replace with your actual model name | |
lora_adapter = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps" | |
max_seq_length = 512 # Adjust as needed | |
dtype = None # Example dtype, adjust based on your setup | |
load_in_4bit = True # Set to True if you want to use 4-bit quantization | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
# Load the base model with adapters | |
model = AutoAdapterModel.from_pretrained(model_name, low_cpu_mem_usage=True).to("cuda") | |
model.load_adapter(lora_adapter) | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
# Combine system message and chat history | |
chat_history = f"{system_message}\n" | |
for user_msg, bot_reply in history: | |
chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n" | |
chat_history += f"User: {message}\nAssistant:" | |
# Prepare the input for the model | |
inputs = tokenizer( | |
chat_history, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_seq_length, | |
).to(device) | |
# Generate the response | |
with torch.no_grad(): | |
outputs = model.generate( | |
input_ids=inputs["input_ids"], | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.eos_token_id, | |
use_cache=True | |
) | |
# Decode and format the response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = response[len(chat_history):].strip() # Remove the input context | |
return response | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |