import spaces import gradio as gr import torch from unsloth import FastLanguageModel # Configuration Variables model_name = "unsloth/Llama-3.2-3B-Instruct-bnb-4bit" # Replace with your actual model name lora_adapter = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-merged-v2-460steps" max_seq_length = 512 # Adjust as needed dtype = None # Example dtype, adjust based on your setup load_in_4bit = True # Set to True if you want to use 4-bit quantization model, tokenizer = FastLanguageModel.from_pretrained( model_name = lora_adapter, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference device = "cuda:0" if torch.cuda.is_available() else "cpu" model = model.to(device) def respond(message, history, system_message, max_tokens, temperature, top_p): # Combine system message and chat history chat_history = f"{system_message}\n" for user_msg, bot_reply in history: chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n" chat_history += f"User: {message}\nAssistant:" # Prepare the input for the model inputs = tokenizer( chat_history, return_tensors="pt", truncation=True, max_length=max_seq_length, ).to(device) # Generate the response with torch.no_grad(): outputs = model.generate( input_ids=inputs["input_ids"], max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, use_cache=True ) # Decode and format the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) response = response[len(chat_history):].strip() # Remove the input context return response # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()