File size: 9,376 Bytes
3231b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import xgboost as xgb
import numpy as np
import pandas as pd
import pickle as pkl
import os
import requests
from bs4 import BeautifulSoup

current_directory = os.path.dirname(os.path.abspath(__file__))
parent_directory = os.path.dirname(current_directory)
data_directory = os.path.join(parent_directory, 'Data')
model_directory = os.path.join(parent_directory, 'Models')
pickle_directory = os.path.join(parent_directory, 'Pickles')

file_path = os.path.join(data_directory, 'pbp_this_year.csv')
pbp = pd.read_csv(file_path, index_col=0, low_memory=False)

# get team abbreviations
file_path = os.path.join(pickle_directory, 'team_name_to_abbreviation.pkl')
with open(file_path, 'rb') as f:
    team_name_to_abbreviation = pkl.load(f)

file_path = os.path.join(pickle_directory, 'team_abbreviation_to_name.pkl')
with open(file_path, 'rb') as f:
    team_abbreviation_to_name = pkl.load(f)

def get_week():
    headers = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
    'Accept-Encoding': 'gzip, deflate',
    'Accept-Language': 'en-US,en;q=0.9',
    'Cache-Control': 'max-age=0',
    'Connection': 'keep-alive',
    'Dnt': '1',
    'Upgrade-Insecure-Requests': '1',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36'
    }
    url = 'https://www.nfl.com/schedules/'
    resp = requests.get(url,headers=headers)
    soup = BeautifulSoup(resp.text, 'html.parser')
    h2_tags = soup.find_all('h2')
    year = h2_tags[0].getText().split(' ')[0]
    week = h2_tags[0].getText().split(' ')[-1]
    return int(week), int(year)


def get_games():
    # pull from NBC
    url = 'https://www.nbcsports.com/nfl/schedule'
    df = pd.read_html(url)[0]
    df['Away Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Away TeamAway Team']]
    df['Home Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Home TeamHome Team']]
    df['Date'] = pd.to_datetime(df['Game TimeGame Time'])
    df['Date'] = df['Date'].dt.strftime('%A %d/%m %I:%M %p')
    df['Date'] = df['Date'].apply(lambda x: f"{x.split()[0]} {int(x.split()[1].split('/')[1])}/{int(x.split()[1].split('/')[0])} {x.split()[2]}".capitalize())

    return df[['Away Team','Home Team','Date']]


def get_one_week(team_name,season,week):
    # create columns
    team = pbp.loc[((pbp['home_team']==team_name) | (pbp['away_team']==team_name)) & (pbp['season']==season)] 
    team['GP'] = team['week']
    team['W'] = [1 if r>0 and team_name==h else 1 if r<0 and team_name==a else 0 for r,a,h in team[['result','away_team','home_team']].values]
    team['L'] = [0 if r>0 and team_name==h else 0 if r<0 and team_name==a else 1 for r,a,h in team[['result','away_team','home_team']].values]
    team['W_PCT'] = team['W']/team['GP']
    team['TOP'] = [t if team_name==p else 0 for t,p in team[['TOP_seconds','posteam']].values]
    team['FGA'] = [1 if team_name==p and f==1 else 0 for p,f in team[['posteam','field_goal_attempt']].values]
    team['FGM'] = [1 if team_name==p and f=='made' else 0 for p,f in team[['posteam','field_goal_result']].values]
    team['FG_PCT'] = team['FGM']/team['FGA']
    team['PassTD'] = np.where((team['posteam'] == team_name) & (team['pass_touchdown'] == 1), 1, 0)
    team['RushTD'] = np.where((team['posteam'] == team_name) & (team['rush_touchdown'] == 1), 1, 0)
    team['PassTD_Allowed'] = np.where((team['defteam'] == team_name) & (team['pass_touchdown'] == 1), 1, 0)
    team['RushTD_Allowed'] = np.where((team['defteam'] == team_name) & (team['rush_touchdown'] == 1), 1, 0)
    team['PassYds'] = [y if p==team_name else 0 for p,y in team[['posteam','passing_yards']].values]
    team['RushYds'] = [y if p==team_name else 0 for p,y in team[['posteam','rushing_yards']].values]
    team['PassYds_Allowed'] = [y if d==team_name else 0 for d,y in team[['defteam','passing_yards']].values]
    team['RushYds_Allowed'] = [y if d==team_name else 0 for d,y in team[['defteam','rushing_yards']].values]
    team['Fum'] = np.where((team['defteam'] == team_name) & (team['fumble_lost'] == 1), 1, 0)
    team['Fum_Allowed'] = np.where((team['posteam'] == team_name) & (team['fumble_lost'] == 1), 1, 0)
    team['INT'] = np.where((team['defteam'] == team_name) & (team['interception'] == 1), 1, 0)
    team['INT_Allowed'] = np.where((team['posteam'] == team_name) & (team['interception'] == 1), 1, 0)
    team['Sacks'] = np.where((team['defteam'] == team_name) & (team['sack'] == 1), 1, 0)
    team['Sacks_Allowed'] = np.where((team['posteam'] == team_name) & (team['sack'] == 1), 1, 0)
    team['Penalties'] = np.where((team['penalty_team'] == team_name), 1, 0)
    team['FirstDowns'] = [1 if team_name==p and f==1 else 0 for p,f in team[['posteam','first_down']].values]
    team['3rdDownConverted'] = [1 if p==team_name and t==1 else 0 for p,t in team[['posteam','third_down_converted']].values]
    team['3rdDownFailed'] = [1 if p==team_name and t==1 else 0 for p,t in team[['posteam','third_down_failed']].values]
    team['3rdDownAllowed'] = [1 if d==team_name and t==1 else 0 for d,t in team[['defteam','third_down_converted']].values]
    team['3rdDownDefended'] = [1 if d==team_name and t==1 else 0 for d,t in team[['defteam','third_down_failed']].values]
    team['PTS'] = [ap if at==team_name else hp if ht==team_name else None for ht,at,hp,ap in team[['home_team','away_team','home_score','away_score']].values]
    team['PointDiff'] = [r if team_name==h else -r if team_name==a else 0 for r,a,h in team[['result','away_team','home_team']].values]

    # aggregate from play-by-play to game-by-game
    features = {
        'GP':'mean',
        'W':'mean',
        'L':'mean',
        'W_PCT':'mean',
        'TOP':'sum',
        'FGA':'sum',
        'FGM':'sum',
        'FG_PCT':'mean',
        'PassTD':'sum',
        'RushTD':'sum',
        'PassTD_Allowed':'sum',
        'RushTD_Allowed':'sum',
        'PassYds':'sum',
        'RushYds':'sum',
        'PassYds_Allowed':'sum',
        'RushYds_Allowed':'sum',
        'Fum':'sum',
        'Fum_Allowed':'sum',
        'INT':'sum',
        'INT_Allowed':'sum',
        'Sacks':'sum',
        'Sacks_Allowed':'sum',
        'Penalties':'sum',
        'FirstDowns':'sum',
        '3rdDownConverted':'sum',
        '3rdDownFailed':'sum',
        '3rdDownAllowed':'sum',
        '3rdDownDefended':'sum',
        'PTS':'mean',
        'PointDiff':'mean'
    }
    game = team.groupby('game_id').agg(features).reset_index()
    game[['W','L']] = game[['W','L']].expanding().sum()
    game[game.columns[4:]] = game[game.columns[4:]].expanding().mean()
    game['TEAM'] = team_name
    game['Season'] = season
    return game.loc[game['GP']==week]


def get_one_week_home_and_away(home,away,season,week):
    home = get_one_week(home,season,week)
    away = get_one_week(away,season,week)
    away.columns = [f'{i}.Away' for i in away.columns]
    gbg = home.merge(away,left_index=True,right_index=True)
    gbg.drop(columns=['TEAM','TEAM.Away','Season.Away','game_id.Away'], inplace=True)
    return gbg


def predict(home,away,season,week,total):
    # finish preparing data
    home_abbrev = team_name_to_abbreviation[home]
    away_abbrev = team_name_to_abbreviation[away]
    gbg = get_one_week_home_and_away(home_abbrev,away_abbrev,season,week)
    gbg['Total Score Close'] = total

    matrix = xgb.DMatrix(gbg.drop(columns=['game_id','Season']).astype(float).values)

    # moneyline
    model = 'xgboost_ML_75.4%'
    file_path = os.path.join(model_directory, f'{model}.json')
    xgb_ml = xgb.Booster()
    xgb_ml.load_model(file_path)
    try:
        ml_predicted_proba = xgb_ml.predict(matrix)[0][1]
        winner_proba = max([ml_predicted_proba, 1-ml_predicted_proba])
        moneyline = {'Winner': [home if ml_predicted_proba>0.6 else away if ml_predicted_proba<0.4 else 'Toss-Up'],
                     'Probabilities':[winner_proba]}
    except:
        moneyline = {'Winner': 'NA',
                     'Probabilities':['N/A']}

    # over/under
    model = 'xgboost_OU_59.3%'
    file_path = os.path.join(model_directory, f'{model}.json')
    xgb_ou = xgb.Booster()
    xgb_ou.load_model(file_path)
    try:
        ou_predicted_proba = xgb_ou.predict(matrix)[0][1]
        over_under = {'Over/Under': ['Over' if ou_predicted_proba>0.5 else 'Under'],
                      'Probability': [ou_predicted_proba]}
    except:
        over_under = {'Over/Under': 'N/A',
                      'Probabilities': ['N/A']}
    
    return moneyline, over_under


def update_past_predictions():
    file_path = os.path.join(data_directory, 'gbg_and_odds_this_year.csv')
    gbg_and_odds_this_year = pd.read_csv(file_path, index_col=0, low_memory=False)
    total_dict = dict(gbg_and_odds_this_year[['game_id','Total Score Close']])
    games = pbp.drop_duplicates(subset='game_id')

    predictions = {}
    for _, i in games.iterrows():
        game_id = i['game_id']
        home = i['home_team']
        away = i['away_team']
        week = i['week']
        season = i['season']
        total = total_dict[game_id]
        predictions[game_id] = predict(home,away,season,week,total)

    predictions_df = pd.DataFrame(predictions)
    file_path = os.path.join(data_directory, 'predictions_this_year.csv')
    predictions_df.to_csv(file_path)