FaYo commited on
Commit
824c2a8
·
1 Parent(s): cef4afc
Files changed (1) hide show
  1. model/onnx/README.md +164 -0
model/onnx/README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - ar
5
+ - bg
6
+ - ca
7
+ - cs
8
+ - da
9
+ - de
10
+ - el
11
+ - en
12
+ - es
13
+ - et
14
+ - fa
15
+ - fi
16
+ - fr
17
+ - gl
18
+ - gu
19
+ - he
20
+ - hi
21
+ - hr
22
+ - hu
23
+ - hy
24
+ - id
25
+ - it
26
+ - ja
27
+ - ka
28
+ - ko
29
+ - ku
30
+ - lt
31
+ - lv
32
+ - mk
33
+ - mn
34
+ - mr
35
+ - ms
36
+ - my
37
+ - nb
38
+ - nl
39
+ - pl
40
+ - pt
41
+ - ro
42
+ - ru
43
+ - sk
44
+ - sl
45
+ - sq
46
+ - sr
47
+ - sv
48
+ - th
49
+ - tr
50
+ - uk
51
+ - ur
52
+ - vi
53
+ license: apache-2.0
54
+ library_name: sentence-transformers
55
+ tags:
56
+ - sentence-transformers
57
+ - feature-extraction
58
+ - sentence-similarity
59
+ - transformers
60
+ language_bcp47:
61
+ - fr-ca
62
+ - pt-br
63
+ - zh-cn
64
+ - zh-tw
65
+ pipeline_tag: sentence-similarity
66
+ ---
67
+
68
+ # sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
71
+
72
+
73
+
74
+ ## Usage (Sentence-Transformers)
75
+
76
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
77
+
78
+ ```
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can use the model like this:
83
+
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+ sentences = ["This is an example sentence", "Each sentence is converted"]
87
+
88
+ model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
89
+ embeddings = model.encode(sentences)
90
+ print(embeddings)
91
+ ```
92
+
93
+
94
+
95
+ ## Usage (HuggingFace Transformers)
96
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
97
+
98
+ ```python
99
+ from transformers import AutoTokenizer, AutoModel
100
+ import torch
101
+
102
+
103
+ # Mean Pooling - Take attention mask into account for correct averaging
104
+ def mean_pooling(model_output, attention_mask):
105
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
106
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
107
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
108
+
109
+
110
+ # Sentences we want sentence embeddings for
111
+ sentences = ['This is an example sentence', 'Each sentence is converted']
112
+
113
+ # Load model from HuggingFace Hub
114
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
115
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
116
+
117
+ # Tokenize sentences
118
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
119
+
120
+ # Compute token embeddings
121
+ with torch.no_grad():
122
+ model_output = model(**encoded_input)
123
+
124
+ # Perform pooling. In this case, max pooling.
125
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
126
+
127
+ print("Sentence embeddings:")
128
+ print(sentence_embeddings)
129
+ ```
130
+
131
+
132
+
133
+ ## Evaluation Results
134
+
135
+
136
+
137
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
138
+
139
+
140
+
141
+ ## Full Model Architecture
142
+ ```
143
+ SentenceTransformer(
144
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
145
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
146
+ )
147
+ ```
148
+
149
+ ## Citing & Authors
150
+
151
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
152
+
153
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
154
+ ```bibtex
155
+ @inproceedings{reimers-2019-sentence-bert,
156
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
157
+ author = "Reimers, Nils and Gurevych, Iryna",
158
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
159
+ month = "11",
160
+ year = "2019",
161
+ publisher = "Association for Computational Linguistics",
162
+ url = "http://arxiv.org/abs/1908.10084",
163
+ }
164
+ ```