import abc from typing import List, Union from numpy.typing import NDArray from sentence_transformers import SentenceTransformer from .type_aliases import ENCODER_DEVICE_TYPE class Encoder(abc.ABC): @abc.abstractmethod def encode( self, prediction: List[str], *, device: ENCODER_DEVICE_TYPE = "cpu", batch_size: int = 32, verbose: bool = False, ) -> NDArray: """ Abstract method to encode a list of sentences into sentence embeddings. Args: prediction (List[str]): List of sentences to encode. device (Union[str, int, List[Union[str, int]]]): Device specification for encoding. batch_size (int): Batch size for encoding. verbose (bool): Whether to print verbose information during encoding. Returns: NDArray: Array of sentence embeddings with shape (num_sentences, embedding_dim). Raises: NotImplementedError: If the method is not implemented in the subclass. """ raise NotImplementedError("Method 'encode' must be implemented in subclass.") class SBertEncoder(Encoder): def __init__(self, model_name: str): """ Initialize SBertEncoder instance. Args: model_name (str): Name or path of the Sentence Transformer model. """ self.model = SentenceTransformer(model_name, trust_remote_code=True) def encode( self, prediction: List[str], *, device: ENCODER_DEVICE_TYPE = "cpu", batch_size: int = 32, verbose: bool = False, ) -> NDArray: """ Encode a list of sentences into sentence embeddings. Args: prediction (List[str]): List of sentences to encode. device (Union[str, int, List[Union[str, int]]]): Device specification for encoding batch_size (int): Batch size for encoding. verbose (bool): Whether to print verbose information during encoding. Returns: NDArray: Array of sentence embeddings with shape (num_sentences, embedding_dim). """ # SBert output is always Batch x Dim if isinstance(device, list): # Use multiprocess encoding for list of devices pool = self.model.start_multi_process_pool(target_devices=device) embeddings = self.model.encode_multi_process( prediction, pool=pool, batch_size=batch_size ) self.model.stop_multi_process_pool(pool) else: # Single device encoding embeddings = self.model.encode( prediction, device=device, batch_size=batch_size, show_progress_bar=verbose, ) return embeddings def get_encoder(model_name: str) -> Encoder: """ Get the encoder instance based on the specified model name. Args: model_name (str): Name of the model to instantiate Options: paraphrase-distilroberta-base-v1, stsb-roberta-large, sentence-transformers/use-cmlm-multilingual Furthermore, you can use any model on Huggingface/SentenceTransformer that is supported by SentenceTransformer. Returns: Encoder: Instance of the selected encoder based on the model_name. Raises: EnvironmentError/RuntimeError: If an unsupported model_name is provided. """ try: encoder = SBertEncoder(model_name) # , device, batch_size, verbose) except EnvironmentError as err: raise EnvironmentError(str(err)) from None except Exception as err: raise RuntimeError(str(err)) from None return encoder