Spaces:
Runtime error
Runtime error
File size: 10,313 Bytes
a1ebdce b305022 a1ebdce 71a4aa9 a1ebdce 71a4aa9 a1ebdce 71a4aa9 b305022 a1ebdce b305022 a1ebdce 71a4aa9 a1ebdce b305022 a1ebdce 3c39ae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import cv2
import gradio as gr
import numpy as np
import json
import pickle
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import BridgeTowerProcessor
from bridgetower_custom import BridgeTowerTextFeatureExtractor, BridgeTowerForITC
import faiss
import webvtt
from pytube import YouTube
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import WebVTTFormatter
device = 'cpu'
model_name = 'BridgeTower/bridgetower-large-itm-mlm-itc'
model = BridgeTowerForITC.from_pretrained(model_name).to(device)
text_model = BridgeTowerTextFeatureExtractor.from_pretrained(model_name).to(device)
processor = BridgeTowerProcessor.from_pretrained(model_name)
def download_video(video_url, path='/tmp/'):
yt = YouTube(video_url)
yt = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if not os.path.exists(path):
os.makedirs(path)
filepath = os.path.join(path, yt.default_filename)
if not os.path.exists(filepath):
print('Downloading video from YouTube...')
yt.download(path)
return filepath
# Get transcript in webvtt
def get_transcript_vtt(video_id, path='/tmp'):
filepath = os.path.join(path,'test_vm.vtt')
if os.path.exists(filepath):
return filepath
transcript = YouTubeTranscriptApi.get_transcript(video_id)
formatter = WebVTTFormatter()
webvtt_formatted = formatter.format_transcript(transcript)
with open(filepath, 'w', encoding='utf-8') as webvtt_file:
webvtt_file.write(webvtt_formatted)
webvtt_file.close()
return filepath
# https://stackoverflow.com/a/57781047
# Resizes a image and maintains aspect ratio
def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# Grab the image size and initialize dimensions
dim = None
(h, w) = image.shape[:2]
# Return original image if no need to resize
if width is None and height is None:
return image
# We are resizing height if width is none
if width is None:
# Calculate the ratio of the height and construct the dimensions
r = height / float(h)
dim = (int(w * r), height)
# We are resizing width if height is none
else:
# Calculate the ratio of the width and construct the dimensions
r = width / float(w)
dim = (width, int(h * r))
# Return the resized image
return cv2.resize(image, dim, interpolation=inter)
def time_to_frame(time, fps):
'''
convert time in seconds into frame number
'''
return time * fps - 1
def str2time(strtime):
strtime = strtime.strip('"')
hrs, mins, seconds = [float(c) for c in strtime.split(':')]
total_seconds = hrs * 60**2 + mins * 60 + seconds
return total_seconds
def collate_fn(batch_list):
batch = {}
batch['input_ids'] = pad_sequence([encoding['input_ids'].squeeze(0) for encoding in batch_list], batch_first=True)
batch['attention_mask'] = pad_sequence([encoding['attention_mask'].squeeze(0) for encoding in batch_list], batch_first=True)
batch['pixel_values'] = torch.cat([encoding['pixel_values'] for encoding in batch_list], dim=0)
batch['pixel_mask'] = torch.cat([encoding['pixel_mask'] for encoding in batch_list], dim=0)
return batch
def extract_images_and_embeds(video_id, video_path, subtitles, output, expanded=False, batch_size=2):
if os.path.exists(os.path.join(output, 'embeddings.pkl')):
return
os.makedirs(output, exist_ok=True)
os.makedirs(os.path.join(output, 'frames'), exist_ok=True)
os.makedirs(os.path.join(output, 'frames_thumb'), exist_ok=True)
count = 0
vidcap = cv2.VideoCapture(video_path)
# Get the frames per second
fps = vidcap.get(cv2.CAP_PROP_FPS)
# Get the total numer of frames in the video.
frame_count = vidcap.get(cv2.CAP_PROP_FRAME_COUNT)
print(fps, frame_count)
frame_number = 0
count = 0
anno = []
embeddings = []
batch_list = []
for idx, caption in enumerate(webvtt.read(subtitles)):
st_time = str2time(caption.start)
ed_time = str2time(caption.end)
mid_time = (ed_time + st_time) / 2
text = caption.text.replace('\n', ' ')
if expanded :
raise NotImplementedError
frame_no = time_to_frame(mid_time, fps)
print('Read a new frame: ', idx, mid_time, frame_no, text)
vidcap.set(1, frame_no) # added this line
success, image = vidcap.read()
if success:
img_fname = f'{video_id}_{idx:06d}'
img_fpath = os.path.join(output, 'frames', img_fname + '.jpg')
image = maintain_aspect_ratio_resize(image, height=350) # save frame as JPEG file
cv2.imwrite( img_fpath, image) # save frame as JPEG file
count += 1
anno.append({
'image_id': idx,
'img_fname': img_fname,
'caption': text,
'time': mid_time,
'frame_no': frame_no
})
else:
break
encoding = processor(image, text, return_tensors="pt").to(device)
encoding['text'] = text
encoding['image_filepath'] = img_fpath
encoding['start_time'] = caption.start
batch_list.append(encoding)
if len(batch_list) == batch_size:
batch = collate_fn(batch_list)
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True)
for i in range(batch_size):
embeddings.append({
'embeddings':outputs.logits[i,2,:].detach().cpu().numpy(),
'text': batch_list[i]['text'],
'image_filepath': batch_list[i]['image_filepath'],
'start_time': batch_list[i]['start_time'],
})
batch_list = []
if batch_list:
batch = collate_fn(batch_list)
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True)
for i in range(len(batch_list)):
embeddings.append({
'embeddings':outputs.logits[i,2,:].detach().cpu().numpy(),
'text': batch_list[i]['text'],
'image_filepath': batch_list[i]['image_filepath'],
'start_time': batch_list[i]['start_time'],
})
with open(os.path.join(output, 'annotations.json'), 'w') as fh:
json.dump(anno, fh)
with open(os.path.join(output, 'embeddings.pkl'), 'wb') as fh:
pickle.dump(embeddings, fh)
def run_query(video_id, text_query, path='/tmp'):
embeddings_filepath = os.path.join(path, 'embeddings.pkl')
faiss_filepath = os.path.join(path, 'faiss_index.pkl')
embeddings = pickle.load(open(embeddings_filepath, 'rb'))
if os.path.exists(faiss_filepath):
faiss_index = pickle.load(open(faiss_filepath, 'rb'))
else :
embs = [emb['embeddings'] for emb in embeddings]
vectors = np.stack(embs, axis=0)
num_vectors, vector_dim = vectors.shape
faiss_index = faiss.IndexFlatIP(vector_dim)
faiss_index.add(vectors)
pickle.dump(faiss_index, open(faiss_filepath, 'wb'))
print('Processing query')
encoding = processor.tokenizer(text_query, return_tensors="pt").to(device)
with torch.no_grad():
outputs = text_model(**encoding)
emb_query = outputs.cpu().numpy()
print('Running FAISS search')
_, I = faiss_index.search(emb_query, 6)
clip_images = [embeddings[idx]['image_filepath'] for idx in I[0]]
transcripts = [f"({embeddings[idx]['start_time']}) {embeddings[idx]['text']}" for idx in I[0]]
return clip_images, transcripts
def get_video_id_from_url(video_url):
"""
Examples:
- http://youtu.be/SA2iWivDJiE
- http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
- http://www.youtube.com/embed/SA2iWivDJiE
- http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US
"""
import urllib.parse
url = urllib.parse.urlparse(video_url)
if url.hostname == 'youtu.be':
return url.path[1:]
if url.hostname in ('www.youtube.com', 'youtube.com'):
if url.path == '/watch':
p = urllib.parse.parse_qs(url.query)
return p['v'][0]
if url.path[:7] == '/embed/':
return url.path.split('/')[2]
if url.path[:3] == '/v/':
return url.path.split('/')[2]
return None
def process(video_url, text_query):
tmp_dir = os.path.join(os.getcwd(), 'cache')
video_id = get_video_id_from_url(video_url)
output_dir = os.path.join(tmp_dir, video_id)
video_file = download_video(video_url, path=output_dir)
subtitles = get_transcript_vtt(video_id, path=output_dir)
extract_images_and_embeds(video_id=video_id,
video_path=video_file,
subtitles=subtitles,
output=output_dir,
expanded=False,
batch_size=8,
)
frame_paths, transcripts = run_query(video_id, text_query, path=output_dir)
return video_file, [(image, caption) for image, caption in zip(frame_paths, transcripts)]
description = "This Space lets you run semantic search on a video."
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Row():
with gr.Column():
video_url = gr.Text(label="Youtube url")
text_query = gr.Text(label="Text query")
btn = gr.Button("Run query")
video_player = gr.Video(label="Video")
with gr.Row():
gallery = gr.Gallery(label="Images").style(grid=6)
gr.Examples(
examples=[
['https://www.youtube.com/watch?v=CvjoXdC-WkM','wedding'],
['https://www.youtube.com/watch?v=fWs2dWcNGu0', 'cheesecake on floor'],
['https://www.youtube.com/watch?v=rmPpNsx4yAk', 'cat woman'],
['https://www.youtube.com/watch?v=KCFYf4TJdN0' ,'sandwich'],
],
inputs=[video_url, text_query],
)
btn.click(fn=process,
inputs=[video_url, text_query],
outputs=[video_player, gallery],
)
demo.launch()
|