# In[]: import sys import os import cv2 import gradio as gr from PIL import Image import numpy as np from torch.nn.utils.rnn import pad_sequence from transformers import BridgeTowerForImageAndTextRetrieval, BridgeTowerProcessor from bridgetower_custom import BridgeTowerTextFeatureExtractor, BridgeTowerForITC import pickle from tqdm import tqdm from PIL import Image import torch import re import urllib.parse import faiss import webvtt import json from pytube import YouTube from youtube_transcript_api import YouTubeTranscriptApi from youtube_transcript_api.formatters import WebVTTFormatter device = 'cpu' model_name = 'BridgeTower/bridgetower-large-itm-mlm-itc' model = BridgeTowerForITC.from_pretrained(model_name).to(device) text_model = BridgeTowerTextFeatureExtractor.from_pretrained(model_name).to(device) processor = BridgeTowerProcessor.from_pretrained(model_name) def download_video(video_url, path='/tmp/'): yt = YouTube(video_url) yt = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() if not os.path.exists(path): os.makedirs(path) filepath = os.path.join(path, yt.default_filename) if not os.path.exists(filepath): print('Downloading video from YouTube...') yt.download(path) return filepath # Get transcript in webvtt def get_transcript_vtt(video_id, path='/tmp'): filepath = os.path.join(path,'test_vm.vtt') if os.path.exists(filepath): return filepath transcript = YouTubeTranscriptApi.get_transcript(video_id) formatter = WebVTTFormatter() webvtt_formatted = formatter.format_transcript(transcript) with open(filepath, 'w', encoding='utf-8') as webvtt_file: webvtt_file.write(webvtt_formatted) webvtt_file.close() return filepath # https://stackoverflow.com/a/57781047 # Resizes a image and maintains aspect ratio def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA): # Grab the image size and initialize dimensions dim = None (h, w) = image.shape[:2] # Return original image if no need to resize if width is None and height is None: return image # We are resizing height if width is none if width is None: # Calculate the ratio of the height and construct the dimensions r = height / float(h) dim = (int(w * r), height) # We are resizing width if height is none else: # Calculate the ratio of the width and construct the dimensions r = width / float(w) dim = (width, int(h * r)) # Return the resized image return cv2.resize(image, dim, interpolation=inter) def time_to_frame(time, fps): ''' convert time in seconds into frame number ''' return time * fps - 1 def str2time(strtime): strtime = strtime.strip('"') hrs, mins, seconds = [float(c) for c in strtime.split(':')] total_seconds = hrs * 60**2 + mins * 60 + seconds return total_seconds def collate_fn(batch_list): batch = {} batch['input_ids'] = pad_sequence([encoding['input_ids'].squeeze(0) for encoding in batch_list], batch_first=True) batch['attention_mask'] = pad_sequence([encoding['attention_mask'].squeeze(0) for encoding in batch_list], batch_first=True) batch['pixel_values'] = torch.cat([encoding['pixel_values'] for encoding in batch_list], dim=0) batch['pixel_mask'] = torch.cat([encoding['pixel_mask'] for encoding in batch_list], dim=0) return batch def extract_images_and_embeds(video_id, video_path, subtitles, output, expanded=False, batch_size=2): if os.path.exists(os.path.join(output, 'embeddings.pkl')): return os.makedirs(output, exist_ok=True) os.makedirs(os.path.join(output, 'frames'), exist_ok=True) os.makedirs(os.path.join(output, 'frames_thumb'), exist_ok=True) count = 0 vidcap = cv2.VideoCapture(video_path) # Get the frames per second fps = vidcap.get(cv2.CAP_PROP_FPS) # Get the total numer of frames in the video. frame_count = vidcap.get(cv2.CAP_PROP_FRAME_COUNT) print(fps, frame_count) frame_number = 0 count = 0 anno = [] embeddings = [] batch_list = [] for idx, caption in enumerate(webvtt.read(subtitles)): st_time = str2time(caption.start) ed_time = str2time(caption.end) mid_time = (ed_time + st_time) / 2 text = caption.text.replace('\n', ' ') if expanded : raise NotImplementedError frame_no = time_to_frame(mid_time, fps) print('Read a new frame: ', idx, mid_time, frame_no, text) vidcap.set(1, frame_no) # added this line success, image = vidcap.read() if success: img_fname = f'{video_id}_{idx:06d}' img_fpath = os.path.join(output, 'frames', img_fname + '.jpg') image = maintain_aspect_ratio_resize(image, height=350) # save frame as JPEG file cv2.imwrite( img_fpath, image) # save frame as JPEG file count += 1 anno.append({ 'image_id': idx, 'img_fname': img_fname, 'caption': text, 'time': mid_time, 'frame_no': frame_no }) else: break encoding = processor(image, text, return_tensors="pt").to(device) encoding['text'] = text encoding['image_filepath'] = img_fpath encoding['start_time'] = caption.start batch_list.append(encoding) if len(batch_list) == batch_size: batch = collate_fn(batch_list) with torch.no_grad(): outputs = model(**batch, output_hidden_states=True) for i in range(batch_size): embeddings.append({ 'embeddings':outputs.logits[i,2,:].detach().cpu().numpy(), 'text': batch_list[i]['text'], 'image_filepath': batch_list[i]['image_filepath'], 'start_time': batch_list[i]['start_time'], }) batch_list = [] if batch_list: batch = collate_fn(batch_list) with torch.no_grad(): outputs = model(**batch, output_hidden_states=True) for i in range(len(batch_list)): embeddings.append({ 'embeddings':outputs.logits[i,2,:].detach().cpu().numpy(), 'text': batch_list[i]['text'], 'image_filepath': batch_list[i]['image_filepath'], 'start_time': batch_list[i]['start_time'], }) with open(os.path.join(output, 'annotations.json'), 'w') as fh: json.dump(anno, fh) with open(os.path.join(output, 'embeddings.pkl'), 'wb') as fh: pickle.dump(embeddings, fh) def run_query(video_id, text_query, path='/tmp'): embeddings_filepath = os.path.join(path, 'embeddings.pkl') faiss_filepath = os.path.join(path, 'faiss_index.pkl') embeddings = pickle.load(open(embeddings_filepath, 'rb')) if os.path.exists(faiss_filepath): faiss_index = pickle.load(open(faiss_filepath, 'rb')) else : embs = [emb['embeddings'] for emb in embeddings] vectors = np.stack(embs, axis=0) num_vectors, vector_dim = vectors.shape faiss_index = faiss.IndexFlatIP(vector_dim) faiss_index.add(vectors) pickle.dump(faiss_index, open(faiss_filepath, 'wb')) print('Processing query') encoding = processor.tokenizer(text_query, return_tensors="pt").to(device) with torch.no_grad(): outputs = text_model(**encoding) emb_query = outputs.cpu().numpy() print('Running FAISS search') _, I = faiss_index.search(emb_query, 6) clip_images = [embeddings[idx]['image_filepath'] for idx in I[0]] transcripts = [f"({embeddings[idx]['start_time']}) {embeddings[idx]['text']}" for idx in I[0]] return clip_images, transcripts def get_video_id_from_url(video_url): """ Examples: - http://youtu.be/SA2iWivDJiE - http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu - http://www.youtube.com/embed/SA2iWivDJiE - http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US """ import urllib.parse url = urllib.parse.urlparse(video_url) if url.hostname == 'youtu.be': return url.path[1:] if url.hostname in ('www.youtube.com', 'youtube.com'): if url.path == '/watch': p = urllib.parse.parse_qs(url.query) return p['v'][0] if url.path[:7] == '/embed/': return url.path.split('/')[2] if url.path[:3] == '/v/': return url.path.split('/')[2] return None def process(video_url, text_query): tmp_dir = os.path.join(os.getcwd(), 'cache') video_id = get_video_id_from_url(video_url) output_dir = os.path.join(tmp_dir, video_id) video_file = download_video(video_url, path=output_dir) subtitles = get_transcript_vtt(video_id, path=output_dir) extract_images_and_embeds(video_id=video_id, video_path=video_file, subtitles=subtitles, output=output_dir, expanded=False, batch_size=8, ) frame_paths, transcripts = run_query(video_id, text_query, path=output_dir) return video_file, [(image, caption) for image, caption in zip(frame_paths, transcripts)] description = "This Space lets you run semantic search on a video." with gr.Blocks() as demo: gr.Markdown(description) with gr.Row(): with gr.Column(): video_url = gr.Text(label="Youtube url") text_query = gr.Text(label="Text query") btn = gr.Button("Run query") video_player = gr.Video(label="Video") with gr.Row(): gallery = gr.Gallery(label="Images").style(grid=6) gr.Examples( examples=[ ['https://www.youtube.com/watch?v=CvjoXdC-WkM','wedding'], ['https://www.youtube.com/watch?v=fWs2dWcNGu0', 'cheesecake on floor'], ['https://www.youtube.com/watch?v=rmPpNsx4yAk', 'cat woman'], ['https://www.youtube.com/watch?v=KCFYf4TJdN0' ,'sandwich'], ], inputs=[video_url, text_query], ) btn.click(fn=process, inputs=[video_url, text_query], outputs=[video_player, gallery], ) demo.launch(share=True, server_port=25566)