Spaces:
Runtime error
Runtime error
File size: 2,206 Bytes
45b3faf e10f2ca 45b3faf e10f2ca 45b3faf e10f2ca 77364e4 45b3faf e10f2ca eb418fc e10f2ca 45b3faf e10f2ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import logging
import sys
import streamlit as st
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llms import LlamaCPP
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.embeddings import LangchainEmbedding
# Set up logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
def configure_llama_model():
model_url = 'https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf'
llm = LlamaCPP(
model_url=model_url,
temperature=0.1,
max_new_tokens=256,
context_window=3900,
model_kwargs={"n_gpu_layers": -1},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=True,
)
return llm
def configure_embeddings():
embed_model = LangchainEmbedding(
HuggingFaceEmbeddings(model_name="thenlper/gte-large")
)
return embed_model
def configure_service_context(llm, embed_model):
return ServiceContext.from_defaults(chunk_size=256, llm=llm, embed_model=embed_model)
def initialize_vector_store_index(data_path, service_context):
documents = SimpleDirectoryReader(data_path).load_data()
import pickle
# Load the index from a file
with open('./index_file.pkl', 'rb') as f:
index = pickle.load(f)
return index
def main():
st.title("Cloudflare RAG")
# Configure and initialize components
llm = configure_llama_model()
embed_model = configure_embeddings()
service_context = configure_service_context(llm, embed_model)
index = initialize_vector_store_index("./", service_context)
# User input
user_input = st.text_input("Enter your message:")
if user_input:
# Generate response
query_engine = index.as_query_engine()
response = query_engine.query(user_input)
# Display response
st.text_area("ChatGPT Response:", response, height=100)
if __name__ == "__main__":
main()
|