Spaces:
Sleeping
Sleeping
File size: 12,590 Bytes
d62bdc3 58d2388 62e41c2 939c139 5b1e4ca d62bdc3 62e41c2 5b1e4ca 58d2388 7edabc5 d62bdc3 5b1e4ca d62bdc3 b8d3f18 62e41c2 5b1e4ca 650bd1f 5b1e4ca 650bd1f 0199907 650bd1f 0199907 650bd1f 5b1e4ca 650bd1f f3ccd4f b8d3f18 f3ccd4f 650bd1f d62bdc3 1597a23 5b1e4ca d62bdc3 650bd1f 5b1e4ca d62bdc3 b8d3f18 d62bdc3 b8d3f18 d62bdc3 b8d3f18 d62bdc3 5b1e4ca d62bdc3 881894e d62bdc3 881894e 650bd1f 881894e 650bd1f 881894e e00e6f3 881894e 650bd1f 881894e 5b1e4ca 881894e d62bdc3 881894e 5b1e4ca d62bdc3 650bd1f d62bdc3 5b1e4ca d62bdc3 58d2388 5b1e4ca d62bdc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
from dataclasses import dataclass
from enum import Enum
from typing import Optional, Dict, Any
from composio_llamaindex import ComposioToolSet, App, Action
from datetime import datetime, timedelta
from collections import defaultdict, Counter
from llama_index.llms.openai import OpenAI
import gradio as gr
import os
import json
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
llm = OpenAI(model='gpt-4o', api_key=os.getenv('OPENAI_API_KEY'))
class ConnectionStatus(Enum):
PENDING = "pending"
ACTIVE = "active"
FAILED = "failed"
NOT_FOUND = "not_found"
@dataclass
class APIResponse:
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
def to_json(self) -> str:
return json.dumps({
"success": self.success,
"data": self.data,
"error": self.error
})
class CalendarService:
def __init__(self):
self.toolset = ComposioToolSet(api_key=os.getenv('COMPOSIO_API_KEY'))
self.connections: Dict[str, Dict[str, Any]] = {}
self.connectionRequest = None
def analyze_calendar_events(self, response_data):
"""
Analyze calendar events and return statistics about meetings.
"""
current_year = datetime.now().year
meetings = []
participants = []
meeting_times = []
total_duration = timedelta()
monthly_meetings = defaultdict(int)
daily_meetings = defaultdict(int)
events = response_data.get('data', {}).get('event_data', {}).get('event_data', [])
for event in events:
start_data = event.get('start', {})
end_data = event.get('end', {})
try:
start = datetime.fromisoformat(start_data.get('dateTime').replace('Z', '+00:00'))
end = datetime.fromisoformat(end_data.get('dateTime').replace('Z', '+00:00'))
if start.year == current_year:
duration = end - start
total_duration += duration
monthly_meetings[start.strftime('%B')] += 1
daily_meetings[start.strftime('%A')] += 1
meeting_times.append(start.strftime('%H:%M'))
if 'attendees' in event:
for attendee in event['attendees']:
if attendee.get('responseStatus') != 'declined':
participants.append(attendee.get('email'))
organizer_email = event.get('organizer', {}).get('email')
if organizer_email:
participants.append(organizer_email)
meetings.append({
'start': start,
'duration': duration,
'summary': event.get('summary', 'No Title')
})
except (ValueError, TypeError, AttributeError) as e:
print(f"Error processing event: {e}")
continue
total_meetings = len(meetings)
stats = {
"total_meetings_this_year": total_meetings
}
if total_meetings > 0:
stats.update({
"total_time_spent": str(total_duration),
"busiest_month": max(monthly_meetings.items(), key=lambda x: x[1])[0] if monthly_meetings else "N/A",
"busiest_day": max(daily_meetings.items(), key=lambda x: x[1])[0] if daily_meetings else "N/A",
"most_frequent_participant": Counter(participants).most_common(1)[0][0] if participants else "N/A",
"average_meeting_duration": str(total_duration / total_meetings),
"most_common_meeting_time": Counter(meeting_times).most_common(1)[0][0] if meeting_times else "N/A",
"monthly_breakdown": dict(monthly_meetings),
"daily_breakdown": dict(daily_meetings)
})
else:
stats.update({
"total_time_spent": "0:00:00",
"busiest_month": "N/A",
"busiest_day": "N/A",
"most_frequent_participant": "N/A",
"average_meeting_duration": "0:00:00",
"most_common_meeting_time": "N/A",
"monthly_breakdown": {},
"daily_breakdown": {}
})
return stats
def initiate_connection(self, entity_id: str, redirect_url: Optional[str] = None) -> APIResponse:
try:
if not redirect_url:
redirect_url = "https://calendar-wrapped-eight.vercel.app/"
connection_request = self.toolset.initiate_connection(
entity_id=entity_id,
app=App.GOOGLECALENDAR,
redirect_url=redirect_url
)
self.connections[entity_id] = {
'status': ConnectionStatus.PENDING.value,
'redirect_url': connection_request.redirectUrl,
'created_at': datetime.now().isoformat()
}
self.connectionRequest = connection_request
return APIResponse(
success=True,
data={
'status': ConnectionStatus.PENDING.value,
'redirect_url': connection_request.redirectUrl,
'wait_time': 60,
'message': "Please authenticate using the provided link."
}
)
except Exception as e:
return APIResponse(
success=False,
error=f"Failed to initiate connection: {str(e)}"
)
def check_status(self, entity_id: str) -> APIResponse:
try:
status = self.connectionRequest.connectionStatus
if status == 'ACTIVE':
status='active'
connection = self.connections[entity_id]
return APIResponse(
success=True,
data={
'status': status,
'message': f"Connection status: {connection['status']}"
}
)
except Exception as e:
return APIResponse(
success=False,
error=f"Failed to check status: {str(e)}"
)
def generate_wrapped(self, entity_id: str) -> APIResponse:
try:
# Get current year's start and end dates
current_year = datetime.now().year
time_min = f"{current_year},1,1,0,0,0"
time_max = f"{current_year},12,31,23,59,59"
request_params = {
"calendar_id": "primary",
"timeMin": time_min,
"timeMax": time_max,
"single_events": True,
"max_results": 2500,
"order_by": "startTime"
}
events_response = self.toolset.execute_action(
action=Action.GOOGLECALENDAR_FIND_EVENT,
params=request_params,
entity_id=entity_id
)
if events_response["successfull"]:
stats = self.analyze_calendar_events(events_response)
# Get tech billionaire comparison
billionaire_prompt = f"""Based on these calendar stats, which tech billionaire's schedule does this most resemble and why?
Stats:
- {stats['total_meetings_this_year']} total meetings
- {stats['total_time_spent']} total time in meetings
- Most active on {stats['busiest_day']}s
- Busiest month is {stats['busiest_month']}
- Average meeting duration: {stats['average_meeting_duration']}
Return as JSON with format: {{"name": "billionaire name", "reason": "explanation"}}
"""
# Get comments for each stat
stats_prompt = f"""Analyze these calendar stats and write a brief, insightful one-sentence comment for each metric:
- Total meetings: {stats['total_meetings_this_year']}
- Total time in meetings: {stats['total_time_spent']}
- Busiest month: {stats['busiest_month']}
- Busiest day: {stats['busiest_day']}
- Average meeting duration: {stats['average_meeting_duration']}
- Most common meeting time: {stats['most_common_meeting_time']}
- Most frequent participant: {stats['most_frequent_participant']}
Return as JSON with format: {{"total_meetings_comment": "", "time_spent_comment": "", "busiest_times_comment": "", "collaborator_comment": "", "habits_comment": ""}}
"""
# Make LLM calls
try:
billionaire_response = json.loads(llm.complete(billionaire_prompt).text)
stats_comments = json.loads(llm.complete(stats_prompt).text)
# Add new fields to stats
stats["schedule_analysis"] = billionaire_response
stats["metric_insights"] = stats_comments
except (json.JSONDecodeError, Exception) as e:
print(f"Error processing LLM responses: {e}")
# Add empty defaults if LLM processing fails
stats["schedule_analysis"] = {"name": "Unknown", "reason": "Analysis unavailable"}
stats["metric_insights"] = {"total_meetings_comment": "", "time_spent_comment": "",
"busiest_times_comment": "", "collaborator_comment": "",
"habits_comment": ""}
return APIResponse(
success=True,
data=stats
)
else:
return APIResponse(
success=False,
error=events_response["error"] or "Failed to fetch calendar events"
)
except Exception as e:
return APIResponse(
success=False,
error=f"Failed to generate wrapped: {str(e)}"
)
def create_gradio_api():
service = CalendarService()
def handle_connection(entity_id: str, redirect_url: Optional[str] = None) -> str:
response = service.initiate_connection(entity_id, redirect_url)
return response.to_json()
def check_status(entity_id: str) -> str:
response = service.check_status(entity_id)
return response.to_json()
def generate_wrapped(entity_id: str) -> str:
response = service.generate_wrapped(entity_id)
return response.to_json()
# Create API endpoints
connection_api = gr.Interface(
fn=handle_connection,
inputs=[
gr.Textbox(label="Entity ID"),
gr.Textbox(label="Redirect URL", placeholder="https://yourwebsite.com/connection/success")
],
outputs=gr.JSON(),
title="Initialize Calendar Connection",
description="Start a new calendar connection for an entity",
examples=[["user123", "https://example.com/callback"]]
)
status_api = gr.Interface(
fn=check_status,
inputs=gr.Textbox(label="Entity ID"),
outputs=gr.JSON(),
title="Check Connection Status",
description="Check the status of an existing connection",
examples=[["user123"]]
)
wrapped_api = gr.Interface(
fn=generate_wrapped,
inputs=gr.Textbox(label="Entity ID"),
outputs=gr.JSON(),
title="Generate Calendar Wrapped",
description="Generate a calendar wrapped summary for an entity",
examples=[["user123"]]
)
# Combine all interfaces
api = gr.TabbedInterface(
[connection_api, status_api, wrapped_api],
["Connect", "Check Status", "Generate Wrapped"],
title="Calendar Wrapped API",
)
return api
if __name__ == "__main__":
api = create_gradio_api()
api.launch(server_name="0.0.0.0", server_port=7860) |