import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"Bsbell21/MarketMail-Bloomz" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, device_map="auto", load_in_8bit=False ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) ''' def make_inference(product, description): batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=200) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) ''' def make_inference(product, description): batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt') batch = {key: value.to('cuda:0') for key, value in batch.items()} with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=200) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.Textbox(lines=2, label="Product Name"), gr.Textbox(lines=5, label="Product Description"), ], gr.Textbox(label="Email Ad"), title="MarketMail-AI", description="MarketMail-AI is a generative model that generates email ads for products.", ).launch()