Bsbell21 commited on
Commit
5ac202c
·
verified ·
1 Parent(s): 81441bd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ peft_model_id = "Bsbell21/MarketMailAI"
6
+ config = PeftConfig.from_pretrained(peft_model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ config.base_model_name_or_path,
9
+ return_dict=True,
10
+ device_map="auto"
11
+ )
12
+ #tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
13
+
14
+ mixtral_tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
15
+
16
+ # Load the Lora model
17
+ model = PeftModel.from_pretrained(model, peft_model_id)
18
+
19
+ def input_from_text(product, description):
20
+ return f"<s>[INST]Below is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:[/INST]"
21
+
22
+ def make_inference(product, description):
23
+ inputs = mixtral_tokenizer(input_from_text(product, description), return_tensors="pt")
24
+
25
+ outputs = merged_model.generate(
26
+ **inputs,
27
+ max_new_tokens=150,
28
+ generation_kwargs={"repetition_penalty" : 1.7}
29
+ )
30
+ # print(mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True))
31
+ result = mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True).split("[/INST]")[1]
32
+ return result
33
+ '''
34
+ def make_inference(product_name, product_description):
35
+ batch = tokenizer(
36
+ f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:",
37
+ return_tensors="pt",
38
+ )
39
+
40
+ batch = {key: value.to('cuda:0') for key, value in batch.items()}
41
+ with torch.cuda.amp.autocast():
42
+ output_tokens = model.generate(**batch, max_new_tokens=50)
43
+ return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
44
+ '''
45
+ if __name__ == "__main__":
46
+ # make a gradio interface
47
+ import gradio as gr
48
+
49
+ gr.Interface(
50
+ make_inference,
51
+ [
52
+ gr.Textbox(lines=2, label="Product Name"),
53
+ gr.Textbox(lines=5, label="Product Description"),
54
+ ],
55
+ gr.Textbox(label="Ad"),
56
+ title="GenerAd-AI",
57
+ description="GenerAd-AI is a generative model that generates ads for products.",
58
+ ).launch()