Bsbell21 commited on
Commit
1286a8d
·
verified ·
1 Parent(s): f903f28

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from peft import PeftModel, PeftConfig
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+
5
+ peft_model_id = f"Bsbell21/llm_instruction_generator"
6
+ model = AutoModelForCausalLM.from_pretrained(peft_model_id, return_dict=True, load_in_8bit=True, device_map='auto')
7
+ tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
8
+ # Load the Lora model
9
+ # model = PeftModel.from_pretrained(model, peft_model_id)
10
+
11
+ def input_from_text(text):
12
+ return "<s>[INST]Use the provided input to create an instruction that could have been used to generate the response with an LLM.\n" + text + "[/INST]"
13
+
14
+ def get_instruction(text):
15
+ inputs = mixtral_tokenizer(input_from_text(text), return_tensors="pt")
16
+
17
+ outputs = merged_model.generate(
18
+ **inputs,
19
+ max_new_tokens=150,
20
+ generation_kwargs={"repetition_penalty" : 1.7}
21
+ )
22
+ # print(mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True))
23
+ print(mixtral_tokenizer.decode(outputs[0], skip_special_tokens=True).split("[/INST]")[1])
24
+
25
+ if __name__ == "__main__":
26
+ # make a gradio interface
27
+ import gradio as gr
28
+
29
+ gr.Interface(
30
+ get_instruction,
31
+ [
32
+ gr.Textbox(lines=10, label="LLM Response"),
33
+ ],
34
+ gr.Textbox(label="LLM Predicted Prompt"),
35
+ title="LLM-Prompt-Predictor",
36
+ description="Prompt Predictor Based on LLM Response",
37
+ ).launch()