Spaces:
Sleeping
Sleeping
Update app/climate_data.py
Browse files- app/climate_data.py +78 -63
app/climate_data.py
CHANGED
@@ -199,8 +199,8 @@ class ClimateDataManager:
|
|
199 |
if line.strip(): # Skip empty lines
|
200 |
data.append(line.split(','))
|
201 |
|
202 |
-
#
|
203 |
-
|
204 |
"year", "month", "day", "hour", "minute", "data_source", "dry_bulb_temp",
|
205 |
"dew_point_temp", "relative_humidity", "atmospheric_pressure", "extraterrestrial_radiation",
|
206 |
"extraterrestrial_radiation_normal", "horizontal_infrared_radiation", "global_horizontal_radiation",
|
@@ -208,11 +208,22 @@ class ClimateDataManager:
|
|
208 |
"direct_normal_illuminance", "diffuse_horizontal_illuminance", "zenith_luminance",
|
209 |
"wind_direction", "wind_speed", "total_sky_cover", "opaque_sky_cover", "visibility",
|
210 |
"ceiling_height", "present_weather_observation", "present_weather_codes",
|
211 |
-
"precipitable_water", "aerosol_optical_depth", "snow_depth", "days_since_last_snowfall"
|
212 |
-
"albedo", "liquid_precipitation_depth", "liquid_precipitation_quantity"
|
213 |
]
|
214 |
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
# Convert numeric columns
|
218 |
numeric_columns = [
|
@@ -222,7 +233,8 @@ class ClimateDataManager:
|
|
222 |
]
|
223 |
|
224 |
for col in numeric_columns:
|
225 |
-
|
|
|
226 |
|
227 |
# Calculate design conditions
|
228 |
design_conditions = self._calculate_design_conditions(df)
|
@@ -359,14 +371,15 @@ class ClimateDataManager:
|
|
359 |
|
360 |
try:
|
361 |
# Ensure numeric columns
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
|
|
370 |
|
371 |
# Convert to integers for month, day, hour
|
372 |
df["month"] = pd.to_numeric(df["month"], errors='coerce').astype('Int64')
|
@@ -642,17 +655,29 @@ def display_climate_summary(climate_data: Dict[str, Any]):
|
|
642 |
design = climate_data["design_conditions"]
|
643 |
location = climate_data["location"]
|
644 |
|
645 |
-
# Location Details
|
646 |
-
st.
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
|
657 |
# Climate Zone
|
658 |
st.markdown(f"### ASHRAE Climate Zone: {climate_data['climate_zone']}")
|
@@ -674,34 +699,6 @@ def display_climate_summary(climate_data: Dict[str, Any]):
|
|
674 |
st.write(f"**Average Wind Speed:** {design['wind_speed']} m/s")
|
675 |
st.write(f"**Average Atmospheric Pressure:** {design['pressure']} Pa")
|
676 |
|
677 |
-
# Typical/Extreme Periods
|
678 |
-
if climate_data.get("typical_extreme_periods"):
|
679 |
-
st.subheader("Typical/Extreme Periods")
|
680 |
-
period_items = [
|
681 |
-
f"- **{key.replace('_', ' ').title()}:** {period['start']['month']}/{period['start']['day']} to {period['end']['month']}/{period['end']['day']}"
|
682 |
-
for key, period in climate_data["typical_extreme_periods"].items()
|
683 |
-
]
|
684 |
-
st.markdown("\n".join(period_items))
|
685 |
-
|
686 |
-
# Ground Temperatures
|
687 |
-
if climate_data.get("ground_temperatures"):
|
688 |
-
st.subheader("Ground Temperatures")
|
689 |
-
table_data = []
|
690 |
-
for depth, temps in climate_data["ground_temperatures"].items():
|
691 |
-
row = {"Depth (m)": float(depth)}
|
692 |
-
row.update({month: f"{temp:.2f}" for month, temp in zip(MONTHS, temps)})
|
693 |
-
table_data.append(row)
|
694 |
-
df = pd.DataFrame(table_data)
|
695 |
-
st.dataframe(df, use_container_width=True)
|
696 |
-
csv = df.to_csv(index=False)
|
697 |
-
st.download_button(
|
698 |
-
label="Download Ground Temperatures as CSV",
|
699 |
-
data=csv,
|
700 |
-
file_name=f"ground_temperatures_{location['city']}_{location['country']}.csv",
|
701 |
-
mime="text/csv",
|
702 |
-
key=f"download_ground_temperatures_{climate_data['id']}"
|
703 |
-
)
|
704 |
-
|
705 |
# Monthly Temperature Chart
|
706 |
st.subheader("Monthly Average Temperatures")
|
707 |
|
@@ -744,18 +741,28 @@ def display_climate_summary(climate_data: Dict[str, Any]):
|
|
744 |
|
745 |
st.plotly_chart(fig_rad, use_container_width=True)
|
746 |
|
747 |
-
#
|
748 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
749 |
|
|
|
|
|
750 |
if "hourly_data" in climate_data and climate_data["hourly_data"]:
|
751 |
-
hourly_count = len(climate_data["hourly_data"])
|
752 |
-
st.write(f"**Number of Hourly Records:** {hourly_count}")
|
753 |
-
|
754 |
-
if hourly_count < 8760:
|
755 |
-
st.warning(f"Expected 8760 hourly records for a full year, but found {hourly_count}. Some data may be missing.")
|
756 |
-
|
757 |
-
# Hourly Climate Data Table
|
758 |
-
st.subheader("Hourly Climate Data")
|
759 |
hourly_table_data = [
|
760 |
{
|
761 |
"Month": record["month"],
|
@@ -782,6 +789,14 @@ def display_climate_summary(climate_data: Dict[str, Any]):
|
|
782 |
mime="text/csv",
|
783 |
key=f"download_hourly_climate_{climate_data['id']}"
|
784 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
else:
|
786 |
st.warning("No hourly data available.")
|
787 |
|
|
|
199 |
if line.strip(): # Skip empty lines
|
200 |
data.append(line.split(','))
|
201 |
|
202 |
+
# Define core columns (common to both 32 and 35 column formats)
|
203 |
+
core_columns = [
|
204 |
"year", "month", "day", "hour", "minute", "data_source", "dry_bulb_temp",
|
205 |
"dew_point_temp", "relative_humidity", "atmospheric_pressure", "extraterrestrial_radiation",
|
206 |
"extraterrestrial_radiation_normal", "horizontal_infrared_radiation", "global_horizontal_radiation",
|
|
|
208 |
"direct_normal_illuminance", "diffuse_horizontal_illuminance", "zenith_luminance",
|
209 |
"wind_direction", "wind_speed", "total_sky_cover", "opaque_sky_cover", "visibility",
|
210 |
"ceiling_height", "present_weather_observation", "present_weather_codes",
|
211 |
+
"precipitable_water", "aerosol_optical_depth", "snow_depth", "days_since_last_snowfall"
|
|
|
212 |
]
|
213 |
|
214 |
+
# Additional columns for 35-column format
|
215 |
+
additional_columns = ["albedo", "liquid_precipitation_depth", "liquid_precipitation_quantity"]
|
216 |
+
|
217 |
+
# Determine number of columns in data
|
218 |
+
num_columns = len(data[0]) if data else 0
|
219 |
+
if num_columns not in [32, 35]:
|
220 |
+
raise ValueError(f"Invalid number of columns in EPW file: {num_columns}. Expected 32 or 35 columns.")
|
221 |
+
|
222 |
+
# Select appropriate columns based on file format
|
223 |
+
columns = core_columns if num_columns == 32 else core_columns + additional_columns
|
224 |
+
|
225 |
+
# Create DataFrame
|
226 |
+
df = pd.DataFrame(data, columns=columns[:num_columns])
|
227 |
|
228 |
# Convert numeric columns
|
229 |
numeric_columns = [
|
|
|
233 |
]
|
234 |
|
235 |
for col in numeric_columns:
|
236 |
+
if col in df.columns:
|
237 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
238 |
|
239 |
# Calculate design conditions
|
240 |
design_conditions = self._calculate_design_conditions(df)
|
|
|
371 |
|
372 |
try:
|
373 |
# Ensure numeric columns
|
374 |
+
numeric_columns = [
|
375 |
+
"dry_bulb_temp", "relative_humidity", "atmospheric_pressure",
|
376 |
+
"global_horizontal_radiation", "direct_normal_radiation",
|
377 |
+
"diffuse_horizontal_radiation", "wind_speed", "wind_direction"
|
378 |
+
]
|
379 |
+
|
380 |
+
for col in numeric_columns:
|
381 |
+
if col in df.columns:
|
382 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
383 |
|
384 |
# Convert to integers for month, day, hour
|
385 |
df["month"] = pd.to_numeric(df["month"], errors='coerce').astype('Int64')
|
|
|
655 |
design = climate_data["design_conditions"]
|
656 |
location = climate_data["location"]
|
657 |
|
658 |
+
# Location Details and Typical/Extreme Periods side by side
|
659 |
+
col1, col2 = st.columns(2)
|
660 |
+
|
661 |
+
with col1:
|
662 |
+
st.markdown("### Location Details")
|
663 |
+
st.markdown(f"""
|
664 |
+
- **Country:** {location['country']}
|
665 |
+
- **City:** {location['city']}
|
666 |
+
- **State/Province:** {location['state_province']}
|
667 |
+
- **Latitude:** {location['latitude']}°
|
668 |
+
- **Longitude:** {location['longitude']}°
|
669 |
+
- **Elevation:** {location['elevation']} m
|
670 |
+
- **Time Zone:** {location['timezone']} hours (UTC)
|
671 |
+
""")
|
672 |
+
|
673 |
+
with col2:
|
674 |
+
if climate_data.get("typical_extreme_periods"):
|
675 |
+
st.markdown("### Typical/Extreme Periods")
|
676 |
+
period_items = [
|
677 |
+
f"- **{key.replace('_', ' ').title()}:** {period['start']['month']}/{period['start']['day']} to {period['end']['month']}/{period['end']['day']}"
|
678 |
+
for key, period in climate_data["typical_extreme_periods"].items()
|
679 |
+
]
|
680 |
+
st.markdown("\n".join(period_items))
|
681 |
|
682 |
# Climate Zone
|
683 |
st.markdown(f"### ASHRAE Climate Zone: {climate_data['climate_zone']}")
|
|
|
699 |
st.write(f"**Average Wind Speed:** {design['wind_speed']} m/s")
|
700 |
st.write(f"**Average Atmospheric Pressure:** {design['pressure']} Pa")
|
701 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
# Monthly Temperature Chart
|
703 |
st.subheader("Monthly Average Temperatures")
|
704 |
|
|
|
741 |
|
742 |
st.plotly_chart(fig_rad, use_container_width=True)
|
743 |
|
744 |
+
# Ground Temperatures
|
745 |
+
if climate_data.get("ground_temperatures"):
|
746 |
+
st.subheader("Ground Temperatures")
|
747 |
+
table_data = []
|
748 |
+
for depth, temps in climate_data["ground_temperatures"].items():
|
749 |
+
row = {"Depth (m)": float(depth)}
|
750 |
+
row.update({month: f"{temp:.2f}" for month, temp in zip(MONTHS, temps)})
|
751 |
+
table_data.append(row)
|
752 |
+
df = pd.DataFrame(table_data)
|
753 |
+
st.dataframe(df, use_container_width=True)
|
754 |
+
csv = df.to_csv(index=False)
|
755 |
+
st.download_button(
|
756 |
+
label="Download Ground Temperatures as CSV",
|
757 |
+
data=csv,
|
758 |
+
file_name=f"ground_temperatures_{location['city']}_{location['country']}.csv",
|
759 |
+
mime="text/csv",
|
760 |
+
key=f"download_ground_temperatures_{climate_data['id']}"
|
761 |
+
)
|
762 |
|
763 |
+
# Hourly Climate Data Table
|
764 |
+
st.subheader("Hourly Climate Data")
|
765 |
if "hourly_data" in climate_data and climate_data["hourly_data"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
766 |
hourly_table_data = [
|
767 |
{
|
768 |
"Month": record["month"],
|
|
|
789 |
mime="text/csv",
|
790 |
key=f"download_hourly_climate_{climate_data['id']}"
|
791 |
)
|
792 |
+
|
793 |
+
# Hourly Data Statistics
|
794 |
+
st.subheader("Hourly Data Statistics")
|
795 |
+
hourly_count = len(climate_data["hourly_data"])
|
796 |
+
st.write(f"**Number of Hourly Records:** {hourly_count}")
|
797 |
+
|
798 |
+
if hourly_count < 8760:
|
799 |
+
st.warning(f"Expected 8760 hourly records for a full year, but found {hourly_count}. Some data may be missing.")
|
800 |
else:
|
801 |
st.warning("No hourly data available.")
|
802 |
|