Spaces:
Sleeping
Sleeping
Upload hvac_loads.py
Browse files- app/hvac_loads.py +803 -912
app/hvac_loads.py
CHANGED
@@ -1,947 +1,838 @@
|
|
1 |
"""
|
2 |
-
|
3 |
-
|
4 |
-
This module performs the core cooling and heating load calculations based on the
|
5 |
-
ASHRAE methodology. It integrates data from climate, components, and internal loads
|
6 |
-
modules to determine the building's thermal loads.
|
7 |
|
8 |
Developed by: Dr Majed Abuseif, Deakin University
|
9 |
© 2025
|
10 |
"""
|
11 |
|
12 |
-
import streamlit as st
|
13 |
-
import pandas as pd
|
14 |
import numpy as np
|
15 |
-
import
|
16 |
-
import
|
17 |
-
import
|
18 |
-
import
|
19 |
-
|
20 |
-
from
|
21 |
from datetime import datetime
|
22 |
-
import math
|
23 |
from collections import defaultdict
|
|
|
|
|
|
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
This is the main function called by main.py when the HVAC Loads page is selected.
|
42 |
-
"""
|
43 |
-
st.title("HVAC Load Calculations")
|
44 |
-
|
45 |
-
# Display help information in an expandable section
|
46 |
-
with st.expander("Help & Information"):
|
47 |
-
display_hvac_loads_help()
|
48 |
-
|
49 |
-
# Check if necessary data is available
|
50 |
-
if not check_prerequisites():
|
51 |
-
st.warning("Please complete all previous steps (Building Info, Climate, Materials, Construction, Components, Internal Loads) before calculating HVAC loads.")
|
52 |
-
return
|
53 |
-
|
54 |
-
# --- User Input for Simulation Parameters --- #
|
55 |
-
st.subheader("Simulation Parameters")
|
56 |
-
|
57 |
-
# Simulation Period
|
58 |
-
with st.expander("Simulation Period"):
|
59 |
-
sim_period_type = st.selectbox(
|
60 |
-
"Simulation Period Type",
|
61 |
-
["Full Year", "From-to", "HDD", "CDD"],
|
62 |
-
key="sim_period_type"
|
63 |
-
)
|
64 |
-
sim_period = {"type": sim_period_type}
|
65 |
-
|
66 |
-
if sim_period_type == "From-to":
|
67 |
-
col1, col2 = st.columns(2)
|
68 |
-
with col1:
|
69 |
-
start_date = st.date_input("Start Date", value=datetime(2025, 1, 1))
|
70 |
-
with col2:
|
71 |
-
end_date = st.date_input("End Date", value=datetime(2025, 12, 31))
|
72 |
-
sim_period["start_date"] = start_date
|
73 |
-
sim_period["end_date"] = end_date
|
74 |
-
elif sim_period_type in ["HDD", "CDD"]:
|
75 |
-
base_temp = st.number_input(
|
76 |
-
f"Base Temperature (°C) for {sim_period_type}",
|
77 |
-
value=18.3 if sim_period_type == "HDD" else 23.9,
|
78 |
-
min_value=0.0,
|
79 |
-
max_value=40.0,
|
80 |
-
step=0.1
|
81 |
-
)
|
82 |
-
sim_period["base_temp"] = base_temp
|
83 |
-
|
84 |
-
# Indoor Conditions
|
85 |
-
with st.expander("Indoor Conditions"):
|
86 |
-
indoor_cond_type = st.selectbox(
|
87 |
-
"Indoor Conditions Type",
|
88 |
-
["Fixed", "Time-varying", "Adaptive"],
|
89 |
-
key="indoor_conditions_type"
|
90 |
-
)
|
91 |
-
indoor_conditions = {"type": indoor_cond_type}
|
92 |
-
|
93 |
-
if indoor_cond_type == "Fixed":
|
94 |
-
col1, col2 = st.columns(2)
|
95 |
-
with col1:
|
96 |
-
cooling_temp = st.number_input(
|
97 |
-
"Cooling Setpoint Temperature (°C)",
|
98 |
-
value=24.0,
|
99 |
-
min_value=15.0,
|
100 |
-
max_value=30.0,
|
101 |
-
step=0.5
|
102 |
-
)
|
103 |
-
cooling_rh = st.number_input(
|
104 |
-
"Cooling Setpoint Relative Humidity (%)",
|
105 |
-
value=50.0,
|
106 |
-
min_value=30.0,
|
107 |
-
max_value=70.0,
|
108 |
-
step=5.0
|
109 |
-
)
|
110 |
-
with col2:
|
111 |
-
heating_temp = st.number_input(
|
112 |
-
"Heating Setpoint Temperature (°C)",
|
113 |
-
value=22.0,
|
114 |
-
min_value=15.0,
|
115 |
-
max_value=30.0,
|
116 |
-
step=0.5
|
117 |
-
)
|
118 |
-
heating_rh = st.number_input(
|
119 |
-
"Heating Setpoint Relative Humidity (%)",
|
120 |
-
value=50.0,
|
121 |
-
min_value=30.0,
|
122 |
-
max_value=70.0,
|
123 |
-
step=5.0
|
124 |
-
)
|
125 |
-
indoor_conditions["cooling_setpoint"] = {"temperature": cooling_temp, "rh": cooling_rh}
|
126 |
-
indoor_conditions["heating_setpoint"] = {"temperature": heating_temp, "rh": heating_rh}
|
127 |
-
elif indoor_cond_type == "Time-varying":
|
128 |
-
st.write("Define Hourly Schedule")
|
129 |
-
schedule = []
|
130 |
-
for hour in range(24):
|
131 |
-
with st.container():
|
132 |
-
col1, col2, col3 = st.columns([1, 2, 2])
|
133 |
-
with col1:
|
134 |
-
st.write(f"Hour {hour}:00")
|
135 |
-
with col2:
|
136 |
-
temp = st.number_input(
|
137 |
-
"Temperature (°C)",
|
138 |
-
value=24.0,
|
139 |
-
min_value=15.0,
|
140 |
-
max_value=30.0,
|
141 |
-
step=0.5,
|
142 |
-
key=f"schedule_temp_{hour}"
|
143 |
-
)
|
144 |
-
with col3:
|
145 |
-
rh = st.number_input(
|
146 |
-
"Relative Humidity (%)",
|
147 |
-
value=50.0,
|
148 |
-
min_value=30.0,
|
149 |
-
max_value=70.0,
|
150 |
-
step=5.0,
|
151 |
-
key=f"schedule_rh_{hour}"
|
152 |
-
)
|
153 |
-
schedule.append({"hour": hour, "temperature": temp, "rh": rh})
|
154 |
-
indoor_conditions["schedule"] = schedule
|
155 |
-
|
156 |
-
# Operating Hours
|
157 |
-
with st.expander("HVAC Operating Hours"):
|
158 |
-
num_periods = st.number_input(
|
159 |
-
"Number of Operating Periods",
|
160 |
-
value=1,
|
161 |
-
min_value=1,
|
162 |
-
max_value=5,
|
163 |
-
step=1
|
164 |
-
)
|
165 |
-
operating_periods = []
|
166 |
-
for i in range(int(num_periods)):
|
167 |
-
with st.container():
|
168 |
-
st.write(f"Operating Period {i+1}")
|
169 |
-
col1, col2 = st.columns(2)
|
170 |
-
with col1:
|
171 |
-
start_hour = st.number_input(
|
172 |
-
"Start Hour",
|
173 |
-
value=8,
|
174 |
-
min_value=0,
|
175 |
-
max_value=23,
|
176 |
-
step=1,
|
177 |
-
key=f"start_hour_{i}"
|
178 |
-
)
|
179 |
-
with col2:
|
180 |
-
end_hour = st.number_input(
|
181 |
-
"End Hour",
|
182 |
-
value=18,
|
183 |
-
min_value=0,
|
184 |
-
max_value=23,
|
185 |
-
step=1,
|
186 |
-
key=f"end_hour_{i}"
|
187 |
-
)
|
188 |
-
operating_periods.append({"start": start_hour, "end": end_hour})
|
189 |
-
hvac_settings = {"operating_hours": operating_periods}
|
190 |
-
|
191 |
-
# Calculation trigger
|
192 |
-
if st.button("Calculate HVAC Loads", key="calculate_hvac_loads"):
|
193 |
-
try:
|
194 |
-
results = calculate_loads(
|
195 |
-
sim_period=sim_period,
|
196 |
-
indoor_conditions=indoor_conditions,
|
197 |
-
hvac_settings=hvac_settings
|
198 |
-
)
|
199 |
-
st.session_state.project_data["hvac_loads"] = results
|
200 |
-
st.success("HVAC loads calculated successfully.")
|
201 |
-
logger.info("HVAC loads calculated.")
|
202 |
-
except Exception as e:
|
203 |
-
st.error(f"Error calculating HVAC loads: {e}")
|
204 |
-
logger.error(f"Error calculating HVAC loads: {e}", exc_info=True)
|
205 |
-
st.session_state.project_data["hvac_loads"] = None
|
206 |
-
|
207 |
-
# Display results if available
|
208 |
-
if "hvac_loads" in st.session_state.project_data and st.session_state.project_data["hvac_loads"]:
|
209 |
-
display_load_results(st.session_state.project_data["hvac_loads"])
|
210 |
-
else:
|
211 |
-
st.info("Click the button above to calculate HVAC loads.")
|
212 |
-
|
213 |
-
# Navigation buttons
|
214 |
-
col1, col2 = st.columns(2)
|
215 |
-
|
216 |
-
with col1:
|
217 |
-
if st.button("Back to Internal Loads", key="back_to_internal_loads"):
|
218 |
-
st.session_state.current_page = "Internal Loads"
|
219 |
-
st.rerun()
|
220 |
-
|
221 |
-
with col2:
|
222 |
-
if st.button("Continue to Building Energy", key="continue_to_building_energy"):
|
223 |
-
st.session_state.current_page = "Building Energy"
|
224 |
-
st.rerun()
|
225 |
-
|
226 |
-
def check_prerequisites() -> bool:
|
227 |
-
"""Check if all prerequisite data is available in session state."""
|
228 |
-
required_keys = [
|
229 |
-
"building_info",
|
230 |
-
"climate_data",
|
231 |
-
"materials",
|
232 |
-
"constructions",
|
233 |
-
"components",
|
234 |
-
"internal_loads"
|
235 |
-
]
|
236 |
-
|
237 |
-
for key in required_keys:
|
238 |
-
if key not in st.session_state.project_data or not st.session_state.project_data[key]:
|
239 |
-
logger.warning(f"Prerequisite check failed: Missing data for '{key}'.")
|
240 |
-
return False
|
241 |
-
|
242 |
-
# Specific checks within components
|
243 |
-
components = st.session_state.project_data["components"]
|
244 |
-
if not components.get("walls") and not components.get("roofs") and not components.get("floors"):
|
245 |
-
logger.warning("Prerequisite check failed: No opaque components defined.")
|
246 |
-
return False
|
247 |
-
|
248 |
-
# Specific checks within climate data
|
249 |
-
climate = st.session_state.project_data["climate_data"]
|
250 |
-
if not climate.get("hourly_data") or not climate.get("design_conditions"):
|
251 |
-
logger.warning("Prerequisite check failed: Climate data not processed.")
|
252 |
-
return False
|
253 |
-
|
254 |
-
return True
|
255 |
-
|
256 |
-
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
257 |
-
"""Filter hourly data based on simulation period, ignoring year."""
|
258 |
-
if sim_period["type"] == "Full Year":
|
259 |
-
return hourly_data
|
260 |
-
filtered_data = []
|
261 |
-
if sim_period["type"] == "From-to":
|
262 |
-
start_month = sim_period["start_date"].month
|
263 |
-
start_day = sim_period["start_date"].day
|
264 |
-
end_month = sim_period["end_date"].month
|
265 |
-
end_day = sim_period["end_date"].day
|
266 |
-
for data in hourly_data:
|
267 |
-
month, day = data["month"], data["day"]
|
268 |
-
if (month > start_month or (month == start_month and day >= start_day)) and \
|
269 |
-
(month < end_month or (month == end_month and day <= end_day)):
|
270 |
-
filtered_data.append(data)
|
271 |
-
elif sim_period["type"] in ["HDD", "CDD"]:
|
272 |
-
base_temp = sim_period.get("base_temp", 18.3 if sim_period["type"] == "HDD" else 23.9)
|
273 |
-
for data in hourly_data:
|
274 |
-
temp = data["dry_bulb"]
|
275 |
-
if (sim_period["type"] == "HDD" and temp < base_temp) or (sim_period["type"] == "CDD" and temp > base_temp):
|
276 |
-
filtered_data.append(data)
|
277 |
-
return filtered_data
|
278 |
-
|
279 |
-
def get_indoor_conditions(indoor_conditions: Dict, hour: int, outdoor_temp: float) -> Dict:
|
280 |
-
"""Determine indoor conditions based on user settings."""
|
281 |
-
if indoor_conditions["type"] == "Fixed":
|
282 |
-
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
283 |
-
if mode == "cooling":
|
284 |
-
return {
|
285 |
-
"temperature": indoor_conditions.get("cooling_setpoint", {}).get("temperature", 24.0),
|
286 |
-
"rh": indoor_conditions.get("cooling_setpoint", {}).get("rh", 50.0)
|
287 |
-
}
|
288 |
-
elif mode == "heating":
|
289 |
-
return {
|
290 |
-
"temperature": indoor_conditions.get("heating_setpoint", {}).get("temperature", 22.0),
|
291 |
-
"rh": indoor_conditions.get("heating_setpoint", {}).get("rh", 50.0)
|
292 |
-
}
|
293 |
-
else:
|
294 |
-
return {"temperature": 24.0, "rh": 50.0}
|
295 |
-
elif indoor_conditions["type"] == "Time-varying":
|
296 |
-
schedule = indoor_conditions.get("schedule", [])
|
297 |
-
if schedule:
|
298 |
-
hour_idx = hour % 24
|
299 |
-
for entry in schedule:
|
300 |
-
if entry["hour"] == hour_idx:
|
301 |
-
return {"temperature": entry["temperature"], "rh": entry["rh"]}
|
302 |
-
return {"temperature": 24.0, "rh": 50.0}
|
303 |
-
else: # Adaptive
|
304 |
-
if 10 <= outdoor_temp <= 33.5:
|
305 |
-
return {"temperature": 0.31 * outdoor_temp + 17.8, "rh": 50.0}
|
306 |
-
return {"temperature": 24.0, "rh": 50.0}
|
307 |
-
|
308 |
-
def calculate_loads(sim_period: Dict, indoor_conditions: Dict, hvac_settings: Dict) -> Dict[str, Any]:
|
309 |
-
"""
|
310 |
-
Perform the main HVAC load calculations with user-defined filters and temperature threshold.
|
311 |
-
|
312 |
-
Args:
|
313 |
-
sim_period: Simulation period settings.
|
314 |
-
indoor_conditions: Indoor conditions settings.
|
315 |
-
hvac_settings: HVAC operating hours settings.
|
316 |
-
|
317 |
-
Returns:
|
318 |
-
Dictionary containing calculation results.
|
319 |
-
"""
|
320 |
-
logger.info("Starting HVAC load calculations...")
|
321 |
-
|
322 |
-
# Get data from session state
|
323 |
-
building_info = st.session_state.project_data["building_info"]
|
324 |
-
climate_data = st.session_state.project_data["climate_data"]
|
325 |
-
materials = get_available_materials()
|
326 |
-
constructions = get_available_constructions()
|
327 |
-
fenestrations = get_available_fenestrations()
|
328 |
-
components = st.session_state.project_data["components"]
|
329 |
-
internal_loads = st.session_state.project_data["internal_loads"]
|
330 |
-
|
331 |
-
# Get design conditions
|
332 |
-
design_conditions = climate_data["design_conditions"]
|
333 |
-
hourly_data_list = climate_data["hourly_data"]
|
334 |
-
|
335 |
-
# Filter hourly data based on simulation period
|
336 |
-
filtered_hourly_data = filter_hourly_data(hourly_data_list, sim_period, climate_data)
|
337 |
-
hourly_data_df = pd.DataFrame(filtered_hourly_data)
|
338 |
-
if hourly_data_df.empty:
|
339 |
-
logger.warning("No hourly data available after filtering.")
|
340 |
-
return {}
|
341 |
-
|
342 |
-
# --- Solar Calculations --- #
|
343 |
-
logger.info("Calculating solar geometry...")
|
344 |
-
latitude = climate_data["location"]["latitude"]
|
345 |
-
longitude = climate_data["location"]["longitude"]
|
346 |
-
timezone = climate_data["location"]["timezone"]
|
347 |
-
building_orientation_angle = building_info["orientation_angle"]
|
348 |
-
|
349 |
-
# Calculate solar angles for filtered hours
|
350 |
-
solar_angles = calculate_solar_angles(latitude, longitude, timezone, hourly_data_df.index)
|
351 |
-
hourly_data_df = pd.concat([hourly_data_df, solar_angles], axis=1)
|
352 |
-
|
353 |
-
# Initialize load arrays
|
354 |
-
num_hours = len(filtered_hourly_data)
|
355 |
-
cooling_loads = {
|
356 |
-
"opaque_conduction": np.zeros(num_hours),
|
357 |
-
"fenestration_conduction": np.zeros(num_hours),
|
358 |
-
"fenestration_solar": np.zeros(num_hours),
|
359 |
-
"infiltration": np.zeros(num_hours),
|
360 |
-
"ventilation": np.zeros(num_hours),
|
361 |
-
"internal_sensible": np.zeros(num_hours),
|
362 |
-
"internal_latent": np.zeros(num_hours)
|
363 |
}
|
364 |
-
|
365 |
-
|
366 |
-
"
|
367 |
-
"
|
368 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
}
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
|
|
|
|
|
|
|
|
380 |
|
381 |
-
#
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
-
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
-
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
-
#
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
area = comp['area']
|
403 |
-
tilt = comp['tilt']
|
404 |
-
orientation = comp['orientation']
|
405 |
-
|
406 |
-
# Calculate surface azimuth
|
407 |
-
surface_azimuth = calculate_surface_azimuth(orientation, building_orientation_angle)
|
408 |
-
|
409 |
-
# Calculate sol-air temperature
|
410 |
-
sol_air_temp = calculate_sol_air_temperature(
|
411 |
-
pd.Series([outdoor_temp], index=[idx]),
|
412 |
-
pd.Series([hour_data.get("direct_normal_radiation", 0)], index=[idx]),
|
413 |
-
pd.Series([hour_data.get("diffuse_horizontal_radiation", 0)], index=[idx]),
|
414 |
-
pd.Series([hourly_data_df.loc[idx, "solar_altitude"]], index=[idx]),
|
415 |
-
pd.Series([hourly_data_df.loc[idx, "solar_azimuth"]], index=[idx]),
|
416 |
-
tilt,
|
417 |
-
surface_azimuth,
|
418 |
-
absorptivity=ABSORPTIVITY_DEFAULT,
|
419 |
-
emissivity=EMISSIVITY_DEFAULT,
|
420 |
-
h_o=20.0
|
421 |
-
)[0]
|
422 |
-
|
423 |
-
# Calculate conduction heat gain/loss
|
424 |
-
if mode == "cooling":
|
425 |
-
delta_t = sol_air_temp - indoor_temp
|
426 |
-
if delta_t > 0:
|
427 |
-
cooling_loads["opaque_conduction"][idx] += u_value * area * delta_t
|
428 |
-
elif mode == "heating":
|
429 |
-
delta_t = indoor_temp - outdoor_temp
|
430 |
-
if delta_t > 0:
|
431 |
-
heating_loads["opaque_conduction"][idx] += u_value * area * delta_t
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
tilt = comp['tilt']
|
442 |
-
orientation = comp['orientation']
|
443 |
|
444 |
-
|
445 |
-
|
|
|
|
|
|
|
|
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
pd.Series([hourly_data_df.loc[idx, "solar_azimuth"]], index=[idx]),
|
453 |
-
tilt,
|
454 |
-
surface_azimuth
|
455 |
-
)[0]
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
if delta_t > 0:
|
461 |
-
cooling_loads["fenestration_conduction"][idx] += u_value * area * delta_t
|
462 |
-
elif mode == "heating":
|
463 |
-
delta_t = indoor_temp - outdoor_temp
|
464 |
-
if delta_t > 0:
|
465 |
-
heating_loads["fenestration_conduction"][idx] += u_value * area * delta_t
|
466 |
|
467 |
-
#
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
# 3. Infiltration
|
473 |
-
if mode in ["cooling", "heating"]:
|
474 |
-
logger.info("Calculating infiltration loads...")
|
475 |
-
volume = building_info["floor_area"] * building_info["building_height"]
|
476 |
-
ach = 0.5
|
477 |
-
infiltration_rate_m3s = volume * ach / 3600.0
|
478 |
-
|
479 |
-
delta_t = outdoor_temp - indoor_temp if mode == "cooling" else indoor_temp - outdoor_temp
|
480 |
-
if delta_t > 0:
|
481 |
-
infiltration_sensible = AIR_DENSITY * AIR_SPECIFIC_HEAT * infiltration_rate_m3s * delta_t
|
482 |
-
if mode == "cooling":
|
483 |
-
cooling_loads["infiltration"][idx] += infiltration_sensible
|
484 |
else:
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
else:
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
"
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
def
|
602 |
-
|
603 |
-
Calculate solar altitude and azimuth angles for given location and time.
|
604 |
-
Uses formulas from Duffie & Beckman, Solar Engineering of Thermal Processes.
|
605 |
-
|
606 |
-
Args:
|
607 |
-
latitude: Latitude in degrees
|
608 |
-
longitude: Longitude in degrees (East positive)
|
609 |
-
timezone: Timezone offset from UTC in hours
|
610 |
-
index: Pandas Index for the hours
|
611 |
-
|
612 |
-
Returns:
|
613 |
-
DataFrame with solar altitude and azimuth angles in degrees.
|
614 |
-
"""
|
615 |
-
# Convert angles to radians
|
616 |
-
lat_rad = np.radians(latitude)
|
617 |
-
|
618 |
-
# Day of year
|
619 |
-
day_of_year = pd.Series(index).apply(lambda x: pd.Timestamp(x).dayofyear)
|
620 |
-
|
621 |
-
# Equation of time (simplified)
|
622 |
-
b = 2 * np.pi * (day_of_year - 81) / 364
|
623 |
-
eot = 9.87 * np.sin(2 * b) - 7.53 * np.cos(b) - 1.5 * np.sin(b) # minutes
|
624 |
-
|
625 |
-
# Local Standard Time Meridian (LSTM)
|
626 |
-
lstm = 15 * timezone
|
627 |
-
|
628 |
-
# Time Correction Factor (TC)
|
629 |
-
tc = 4 * (longitude - lstm) + eot # minutes
|
630 |
-
|
631 |
-
# Local Solar Time (LST)
|
632 |
-
local_time_hour = pd.Series(index).apply(lambda x: pd.Timestamp(x).hour + pd.Timestamp(x).minute / 60.0)
|
633 |
-
lst = local_time_hour + tc / 60.0
|
634 |
-
|
635 |
-
# Hour Angle (HRA)
|
636 |
-
hra = 15 * (lst - 12) # degrees
|
637 |
-
hra_rad = np.radians(hra)
|
638 |
-
|
639 |
-
# Declination Angle
|
640 |
-
declination_rad = np.radians(23.45 * np.sin(2 * np.pi * (284 + day_of_year) / 365))
|
641 |
-
|
642 |
-
# Solar Altitude (alpha)
|
643 |
-
sin_alpha = np.sin(lat_rad) * np.sin(declination_rad) + \
|
644 |
-
np.cos(lat_rad) * np.cos(declination_rad) * np.cos(hra_rad)
|
645 |
-
solar_altitude_rad = np.arcsin(np.clip(sin_alpha, -1, 1))
|
646 |
-
solar_altitude_deg = np.degrees(solar_altitude_rad)
|
647 |
-
|
648 |
-
# Solar Azimuth (gamma_s) - measured from South, positive West
|
649 |
-
cos_gamma_s = (np.sin(solar_altitude_rad) * np.sin(lat_rad) - np.sin(declination_rad)) / \
|
650 |
-
(np.cos(solar_altitude_rad) * np.cos(lat_rad))
|
651 |
-
solar_azimuth_rad = np.arccos(np.clip(cos_gamma_s, -1, 1))
|
652 |
-
solar_azimuth_deg = np.degrees(solar_azimuth_rad)
|
653 |
-
# Adjust azimuth based on hour angle
|
654 |
-
solar_azimuth_deg = np.where(hra > 0, solar_azimuth_deg, 360 - solar_azimuth_deg)
|
655 |
-
# Convert to azimuth from North, positive East
|
656 |
-
solar_azimuth_deg = (solar_azimuth_deg + 180) % 360
|
657 |
-
|
658 |
-
return pd.DataFrame({
|
659 |
-
"solar_altitude": solar_altitude_deg,
|
660 |
-
"solar_azimuth": solar_azimuth_deg
|
661 |
-
}, index=index)
|
662 |
-
|
663 |
-
def calculate_surface_azimuth(orientation: str, building_orientation_angle: float) -> float:
|
664 |
-
"""
|
665 |
-
Calculate the actual surface azimuth based on orientation label and building rotation.
|
666 |
-
Azimuth: 0=N, 90=E, 180=S, 270=W
|
667 |
-
|
668 |
-
Args:
|
669 |
-
orientation: Orientation label (e.g., "A (North)", "B (South)")
|
670 |
-
building_orientation_angle: Building rotation angle from North (degrees, positive East)
|
671 |
-
|
672 |
-
Returns:
|
673 |
-
Surface azimuth in degrees.
|
674 |
-
"""
|
675 |
-
base_azimuth = {
|
676 |
-
"A (North)": 0.0,
|
677 |
-
"B (South)": 180.0,
|
678 |
-
"C (East)": 90.0,
|
679 |
-
"D (West)": 270.0,
|
680 |
-
"Horizontal": 0.0
|
681 |
-
}.get(orientation, 0.0)
|
682 |
-
|
683 |
-
# Adjust for building rotation
|
684 |
-
surface_azimuth = (base_azimuth + building_orientation_angle) % 360
|
685 |
-
return surface_azimuth
|
686 |
-
|
687 |
-
def calculate_incident_solar(dnr: pd.Series, dhr: pd.Series, solar_altitude: pd.Series, solar_azimuth: pd.Series, tilt: float, surface_azimuth: float) -> pd.Series:
|
688 |
-
"""
|
689 |
-
Calculate total incident solar radiation on a tilted surface.
|
690 |
-
|
691 |
-
Args:
|
692 |
-
dnr: Direct Normal Radiation (W/m²)
|
693 |
-
dhr: Diffuse Horizontal Radiation (W/m²)
|
694 |
-
solar_altitude: Solar altitude angle (degrees)
|
695 |
-
solar_azimuth: Solar azimuth angle (degrees, 0=N, positive E)
|
696 |
-
tilt: Surface tilt angle from horizontal (degrees)
|
697 |
-
surface_azimuth: Surface azimuth angle (degrees, 0=N, positive E)
|
698 |
-
|
699 |
-
Returns:
|
700 |
-
Total incident solar radiation on the surface (W/m²).
|
701 |
-
"""
|
702 |
-
# Convert angles to radians
|
703 |
-
alt_rad = np.radians(solar_altitude)
|
704 |
-
az_rad = np.radians(solar_azimuth)
|
705 |
-
tilt_rad = np.radians(tilt)
|
706 |
-
surf_az_rad = np.radians(surface_azimuth)
|
707 |
-
|
708 |
-
# Angle of Incidence (theta)
|
709 |
-
cos_theta = np.cos(alt_rad) * np.sin(tilt_rad) * np.cos(az_rad - surf_az_rad) + \
|
710 |
-
np.sin(alt_rad) * np.cos(tilt_rad)
|
711 |
-
cos_theta = np.maximum(0, cos_theta)
|
712 |
-
|
713 |
-
# Direct radiation component
|
714 |
-
direct_tilted = dnr * cos_theta
|
715 |
-
|
716 |
-
# Diffuse radiation component (simplified isotropic sky model)
|
717 |
-
sky_diffuse_tilted = dhr * (1 + np.cos(tilt_rad)) / 2
|
718 |
-
|
719 |
-
# Ground reflected component
|
720 |
-
albedo = 0.2
|
721 |
-
ground_reflected_tilted = (dnr * np.sin(alt_rad) + dhr) * albedo * (1 - np.cos(tilt_rad)) / 2
|
722 |
-
|
723 |
-
# Total incident solar radiation
|
724 |
-
total_incident = direct_tilted + sky_diffuse_tilted + ground_reflected_tilted
|
725 |
-
return total_incident
|
726 |
-
|
727 |
-
def calculate_sol_air_temperature(t_oa: pd.Series, dnr: pd.Series, dhr: pd.Series, solar_altitude: pd.Series, solar_azimuth: pd.Series, tilt: float, surface_azimuth: float, absorptivity: float, emissivity: float, h_o: float) -> pd.Series:
|
728 |
-
"""
|
729 |
-
Calculate Sol-Air Temperature.
|
730 |
-
|
731 |
-
Args:
|
732 |
-
t_oa: Outdoor air temperature (°C)
|
733 |
-
dnr, dhr, solar_altitude, solar_azimuth: Solar data
|
734 |
-
tilt, surface_azimuth: Surface orientation
|
735 |
-
absorptivity: Surface solar absorptivity
|
736 |
-
emissivity: Surface thermal emissivity
|
737 |
-
h_o: Outside surface heat transfer coefficient (W/m²·K)
|
738 |
-
|
739 |
-
Returns:
|
740 |
-
Sol-air temperature (°C).
|
741 |
-
"""
|
742 |
-
# Calculate incident solar radiation
|
743 |
-
i_total = calculate_incident_solar(dnr, dhr, solar_altitude, solar_azimuth, tilt, surface_azimuth)
|
744 |
-
|
745 |
-
# Calculate sky temperature
|
746 |
-
t_sky = t_oa * (SKY_TEMP_FACTOR * t_oa**0.25)**0.25
|
747 |
-
|
748 |
-
# Longwave radiation exchange term
|
749 |
-
delta_r = STEFAN_BOLTZMANN * emissivity * ((t_oa + 273.15)**4 - (t_sky + 273.15)**4) / h_o
|
750 |
-
|
751 |
-
# Sol-air temperature
|
752 |
-
t_sol_air = t_oa + (absorptivity * i_total / h_o) - delta_r
|
753 |
-
return t_sol_air
|
754 |
-
|
755 |
-
def calculate_hourly_internal_loads(internal_loads_data: Dict[str, List[Dict[str, Any]]]) -> Tuple[np.ndarray, np.ndarray]:
|
756 |
-
"""
|
757 |
-
Calculate total hourly sensible and latent internal loads.
|
758 |
-
|
759 |
-
Args:
|
760 |
-
internal_loads_data: Dictionary containing lists of loads for each type.
|
761 |
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
773 |
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
782 |
else:
|
783 |
-
|
784 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
else:
|
792 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
793 |
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
else:
|
800 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
801 |
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
st.subheader("Load Components at Peak Heating Hour")
|
865 |
-
peak_hour_heating = results["peak_heating_hour"]
|
866 |
-
|
867 |
-
heating_components = results["heating_load_components"]
|
868 |
-
internal_gains_at_peak = results["cooling_load_components"]["internal_sensible"][peak_hour_heating]
|
869 |
-
|
870 |
-
peak_heating_data = {
|
871 |
-
"Component": list(heating_components.keys()) + ["Internal Gains Offset"],
|
872 |
-
"Load (W)": [heating_components[k][peak_hour_heating] for k in heating_components] + [-internal_gains_at_peak]
|
873 |
-
}
|
874 |
-
peak_heating_df = pd.DataFrame(peak_heating_data)
|
875 |
-
peak_heating_df = peak_heating_df[peak_heating_df["Load (W)"] != 0]
|
876 |
-
|
877 |
-
fig_peak_heating = px.pie(
|
878 |
-
peak_heating_df,
|
879 |
-
values="Load (W)",
|
880 |
-
names="Component",
|
881 |
-
title=f"Heating Load Breakdown at Peak Hour ({peak_hour_heating})"
|
882 |
-
)
|
883 |
-
st.plotly_chart(fig_peak_heating, use_container_width=True)
|
884 |
-
|
885 |
-
def get_available_materials() -> Dict[str, Any]:
|
886 |
-
mats = {}
|
887 |
-
if "materials" in st.session_state.project_data:
|
888 |
-
mats.update(st.session_state.project_data["materials"].get("library", {}))
|
889 |
-
mats.update(st.session_state.project_data["materials"].get("project", {}))
|
890 |
-
return mats
|
891 |
-
|
892 |
-
def get_available_constructions() -> Dict[str, Any]:
|
893 |
-
consts = {}
|
894 |
-
if "constructions" in st.session_state.project_data:
|
895 |
-
consts.update(st.session_state.project_data["constructions"].get("library", {}))
|
896 |
-
consts.update(st.session_state.project_data["constructions"].get("project", {}))
|
897 |
-
return consts
|
898 |
-
|
899 |
-
def get_available_fenestrations() -> Dict[str, Any]:
|
900 |
-
fens = {}
|
901 |
-
if "fenestrations" in st.session_state.project_data:
|
902 |
-
fens.update(st.session_state.project_data["fenestrations"].get("library", {}))
|
903 |
-
fens.update(st.session_state.project_data["fenestrations"].get("project", {}))
|
904 |
-
return fens
|
905 |
-
|
906 |
-
def display_hvac_loads_help():
|
907 |
-
"""
|
908 |
-
Display help information for the HVAC loads page.
|
909 |
-
"""
|
910 |
-
st.markdown("""
|
911 |
-
### HVAC Loads Help
|
912 |
-
|
913 |
-
This section calculates the building's heating and cooling loads based on the information provided in the previous steps.
|
914 |
-
|
915 |
-
**Calculation Process:**
|
916 |
-
|
917 |
-
1. **Heat Transfer**: Calculates heat gains and losses through the building envelope (walls, roofs, floors, windows, doors, skylights) considering conduction and solar radiation.
|
918 |
-
2. **Infiltration & Ventilation**: Calculates loads due to air exchange with the outside.
|
919 |
-
3. **Internal Loads**: Incorporates heat gains from occupants, lighting, and equipment.
|
920 |
-
4. **Summation**: Combines all heat gains and losses to determine the net hourly cooling and heating loads.
|
921 |
-
|
922 |
-
**Simulation Parameters:**
|
923 |
-
|
924 |
-
* **Simulation Period**: Choose 'Full Year', a specific date range ('From-to'), or degree-day methods ('HDD' or 'CDD').
|
925 |
-
* **Indoor Conditions**: Set fixed setpoints, time-varying schedules, or adaptive comfort temperatures.
|
926 |
-
* **Operating Hours**: Define when the HVAC system operates.
|
927 |
-
|
928 |
-
**Results:**
|
929 |
-
|
930 |
-
* **Peak Loads**: Shows the maximum calculated cooling and heating loads.
|
931 |
-
* **Hourly Profiles**: Displays graphs of loads for the selected period.
|
932 |
-
* **Load Components**: Shows the breakdown of loads at peak hours.
|
933 |
-
|
934 |
-
**Workflow:**
|
935 |
-
|
936 |
-
1. Complete all previous sections.
|
937 |
-
2. Configure simulation parameters.
|
938 |
-
3. Click "Calculate HVAC Loads".
|
939 |
-
4. Review results.
|
940 |
-
5. Proceed to Building Energy section.
|
941 |
-
|
942 |
-
**Important:**
|
943 |
-
|
944 |
-
* Calculations follow ASHRAE methodology.
|
945 |
-
* Input data quality affects accuracy.
|
946 |
-
* Review results carefully.
|
947 |
-
""")
|
|
|
1 |
"""
|
2 |
+
HVAC Calculator Code Documentation
|
|
|
|
|
|
|
|
|
3 |
|
4 |
Developed by: Dr Majed Abuseif, Deakin University
|
5 |
© 2025
|
6 |
"""
|
7 |
|
|
|
|
|
8 |
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
11 |
+
from enum import Enum
|
12 |
+
import streamlit as st
|
13 |
+
from data.material_library import Construction, GlazingMaterial, DoorMaterial, Material, MaterialLibrary
|
14 |
+
from data.internal_loads import PEOPLE_ACTIVITY_LEVELS, DIVERSITY_FACTORS, LIGHTING_FIXTURE_TYPES, EQUIPMENT_HEAT_GAINS, VENTILATION_RATES, INFILTRATION_SETTINGS
|
15 |
from datetime import datetime
|
|
|
16 |
from collections import defaultdict
|
17 |
+
import logging
|
18 |
+
import math
|
19 |
+
from utils.ctf_calculations import CTFCalculator, ComponentType, CTFCoefficients
|
20 |
|
21 |
# Configure logging
|
22 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
+
class TFMCalculations:
|
26 |
+
# Solar calculation constants (from solar.py)
|
27 |
+
SHGC_COEFFICIENTS = {
|
28 |
+
"Single Clear": [0.1, -0.0, 0.0, -0.0, 0.0, 0.87],
|
29 |
+
"Single Tinted": [0.12, -0.0, 0.0, -0.0, 0.8, -0.0],
|
30 |
+
"Double Clear": [0.14, -0.0, 0.0, -0.0, 0.78, -0.0],
|
31 |
+
"Double Low-E": [0.2, -0.0, 0.0, 0.7, 0.0, -0.0],
|
32 |
+
"Double Tinted": [0.15, -0.0, 0.0, -0.0, 0.65, -0.0],
|
33 |
+
"Double Low-E with Argon": [0.18, -0.0, 0.0, 0.68, 0.0, -0.0],
|
34 |
+
"Single Low-E Reflective": [0.22, -0.0, 0.0, 0.6, 0.0, -0.0],
|
35 |
+
"Double Reflective": [0.24, -0.0, 0.0, 0.58, 0.0, -0.0],
|
36 |
+
"Electrochromic": [0.25, -0.0, 0.5, -0.0, 0.0, -0.0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
+
|
39 |
+
GLAZING_TYPE_MAPPING = {
|
40 |
+
"Single Clear 3mm": "Single Clear",
|
41 |
+
"Single Clear 6mm": "Single Clear",
|
42 |
+
"Single Tinted 6mm": "Single Tinted",
|
43 |
+
"Double Clear 6mm/13mm Air": "Double Clear",
|
44 |
+
"Double Low-E 6mm/13mm Air": "Double Low-E",
|
45 |
+
"Double Tinted 6mm/13mm Air": "Double Tinted",
|
46 |
+
"Double Low-E 6mm/13mm Argon": "Double Low-E with Argon",
|
47 |
+
"Single Low-E Reflective 6mm": "Single Low-E Reflective",
|
48 |
+
"Double Reflective 6mm/13mm Air": "Double Reflective",
|
49 |
+
"Electrochromic 6mm/13mm Air": "Electrochromic"
|
50 |
}
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def calculate_conduction_load(component, outdoor_temp: float, indoor_temp: float, hour: int, mode: str = "none") -> tuple[float, float]:
|
54 |
+
"""Calculate conduction load for heating and cooling in kW based on mode."""
|
55 |
+
if mode == "none":
|
56 |
+
return 0, 0
|
57 |
+
delta_t = outdoor_temp - indoor_temp
|
58 |
+
if mode == "cooling" and delta_t <= 0:
|
59 |
+
return 0, 0
|
60 |
+
if mode == "heating" and delta_t >= 0:
|
61 |
+
return 0, 0
|
62 |
+
|
63 |
+
# Get CTF coefficients using CTFCalculator
|
64 |
+
ctf = CTFCalculator.calculate_ctf_coefficients(component)
|
65 |
|
66 |
+
# Initialize history terms (simplified: assume steady-state history for demonstration)
|
67 |
+
# In practice, maintain temperature and flux histories
|
68 |
+
load = component.u_value * component.area * delta_t
|
69 |
+
for i in range(len(ctf.Y)):
|
70 |
+
load += component.area * ctf.Y[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
71 |
+
load -= component.area * ctf.Z[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
72 |
+
# Note: F terms require flux history, omitted here for simplicity
|
73 |
+
cooling_load = load / 1000 if mode == "cooling" else 0
|
74 |
+
heating_load = -load / 1000 if mode == "heating" else 0
|
75 |
+
return cooling_load, heating_load
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def day_of_year(month: int, day: int, year: int) -> int:
|
79 |
+
"""Calculate day of the year (n) from month, day, and year, accounting for leap years.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
month (int): Month of the year (1-12).
|
83 |
+
day (int): Day of the month (1-31).
|
84 |
+
year (int): Year.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
int: Day of the year (1-365 or 366 for leap years).
|
88 |
+
|
89 |
+
References:
|
90 |
+
ASHRAE Handbook—Fundamentals, Chapter 18.
|
91 |
+
"""
|
92 |
+
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
93 |
+
if year % 4 == 0 and (year % 100 != 0 or year % 400 == 0):
|
94 |
+
days_in_month[1] = 29
|
95 |
+
return sum(days_in_month[:month-1]) + day
|
96 |
+
|
97 |
+
@staticmethod
|
98 |
+
def equation_of_time(n: int) -> float:
|
99 |
+
"""Calculate Equation of Time (EOT) in minutes using Spencer's formula.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
n (int): Day of the year (1-365 or 366).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
float: Equation of Time in minutes.
|
106 |
+
|
107 |
+
References:
|
108 |
+
ASHRAE Handbook—Fundamentals, Chapter 18.
|
109 |
+
"""
|
110 |
+
B = (n - 1) * 360 / 365
|
111 |
+
B_rad = math.radians(B)
|
112 |
+
EOT = 229.2 * (0.000075 + 0.001868 * math.cos(B_rad) - 0.032077 * math.sin(B_rad) -
|
113 |
+
0.014615 * math.cos(2 * B_rad) - 0.04089 * math.sin(2 * B_rad))
|
114 |
+
return EOT
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def calculate_dynamic_shgc(glazing_type: str, cos_theta: float) -> float:
|
118 |
+
"""Calculate dynamic SHGC based on incidence angle.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
glazing_type (str): Type of glazing (e.g., 'Single Clear').
|
122 |
+
cos_theta (float): Cosine of the angle of incidence.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
float: Dynamic SHGC value.
|
126 |
+
|
127 |
+
References:
|
128 |
+
ASHRAE Handbook—Fundamentals, Chapter 15, Table 13.
|
129 |
+
"""
|
130 |
+
if glazing_type not in TFMCalculations.SHGC_COEFFICIENTS:
|
131 |
+
logger.warning(f"Unknown glazing type '{glazing_type}'. Using default SHGC coefficients for Single Clear.")
|
132 |
+
glazing_type = "Single Clear"
|
133 |
|
134 |
+
c = TFMCalculations.SHGC_COEFFICIENTS[glazing_type]
|
135 |
+
# Incidence angle modifier: f(cos(θ)) = c_0 + c_1·cos(θ) + c_2·cos²(θ) + c_3·cos³(θ) + c_4·cos⁴(θ) + c_5·cos⁵(θ)
|
136 |
+
f_cos_theta = (c[0] + c[1] * cos_theta + c[2] * cos_theta**2 +
|
137 |
+
c[3] * cos_theta**3 + c[4] * cos_theta**4 + c[5] * cos_theta**5)
|
138 |
+
return f_cos_theta
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
142 |
+
project_materials: Dict, project_constructions: Dict,
|
143 |
+
project_glazing_materials: Dict, project_door_materials: Dict) -> Tuple[float, float, float, Optional[float], float]:
|
144 |
+
"""
|
145 |
+
Determine surface parameters (tilt, azimuth, h_o, emissivity, solar_absorption) for a component.
|
146 |
+
Uses MaterialLibrary to fetch properties from first layer for walls/roofs, DoorMaterial for doors,
|
147 |
+
and GlazingMaterial for windows/skylights. Handles orientation and tilt based on component type:
|
148 |
+
- Walls, Doors, Windows: Azimuth = elevation base azimuth + component.rotation; Tilt = 90°.
|
149 |
+
- Roofs, Skylights: Azimuth = component.orientation; Tilt = component.tilt (default 180°).
|
150 |
|
151 |
+
Args:
|
152 |
+
component: Component object with component_type, elevation, rotation, orientation, tilt,
|
153 |
+
construction, glazing_material, or door_material.
|
154 |
+
building_info (Dict): Building information containing orientation_angle for elevation mapping.
|
155 |
+
material_library: MaterialLibrary instance for accessing library materials/constructions.
|
156 |
+
project_materials: Dict of project-specific Material objects.
|
157 |
+
project_constructions: Dict of project-specific Construction objects.
|
158 |
+
project_glazing_materials: Dict of project-specific GlazingMaterial objects.
|
159 |
+
project_door_materials: Dict of project-specific DoorMaterial objects.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
Tuple[float, float, float, Optional[float], float]: Surface tilt (°), surface azimuth (°),
|
163 |
+
h_o (W/m²·K), emissivity, solar_absorption.
|
164 |
+
"""
|
165 |
+
# Default parameters
|
166 |
+
component_name = getattr(component, 'name', 'unnamed_component')
|
167 |
|
168 |
+
# Initialize default values
|
169 |
+
surface_tilt = 90.0 # Default vertical for walls, windows, doors
|
170 |
+
surface_azimuth = 0.0 # Default north-facing
|
171 |
+
h_o = 17.0 # Default exterior convection coefficient
|
172 |
+
emissivity = 0.9 # Default for opaque components
|
173 |
+
solar_absorption = 0.6 # Default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
try:
|
176 |
+
# Set component-specific defaults based on type
|
177 |
+
if component.component_type == ComponentType.ROOF:
|
178 |
+
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
179 |
+
h_o = 23.0 # W/m²·K for roofs
|
180 |
+
# For roofs, use orientation directly
|
181 |
+
surface_azimuth = getattr(component, 'orientation', 0.0)
|
182 |
+
logger.debug(f"Roof component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
|
|
|
|
183 |
|
184 |
+
elif component.component_type == ComponentType.SKYLIGHT:
|
185 |
+
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
186 |
+
h_o = 23.0 # W/m²·K for skylights
|
187 |
+
# For skylights, use orientation directly, not elevation
|
188 |
+
surface_azimuth = getattr(component, 'orientation', 0.0)
|
189 |
+
logger.debug(f"Skylight component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
190 |
|
191 |
+
elif component.component_type == ComponentType.FLOOR:
|
192 |
+
surface_tilt = 180.0 # Horizontal, downward
|
193 |
+
h_o = 17.0 # W/m²·K
|
194 |
+
surface_azimuth = 0.0 # Default azimuth for floors
|
195 |
+
logger.debug(f"Floor component {component_name}: using default azimuth={surface_azimuth}, tilt={surface_tilt}")
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
else: # WALL, DOOR, WINDOW
|
198 |
+
surface_tilt = 90.0 # Vertical
|
199 |
+
h_o = 17.0 # W/m²·K
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
# Check for elevation attribute
|
202 |
+
elevation = getattr(component, 'elevation', None)
|
203 |
+
if not elevation:
|
204 |
+
logger.warning(f"Component {component_name} ({component.component_type.value}) is missing 'elevation' field. Using default azimuth=0.")
|
205 |
+
surface_azimuth = 0.0 # Default to north-facing if elevation is missing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
else:
|
207 |
+
# Define elevation azimuths based on building orientation_angle
|
208 |
+
base_azimuth = building_info.get("orientation_angle", 0.0)
|
209 |
+
elevation_angles = {
|
210 |
+
"A": base_azimuth,
|
211 |
+
"B": (base_azimuth + 90.0) % 360,
|
212 |
+
"C": (base_azimuth + 180.0) % 360,
|
213 |
+
"D": (base_azimuth + 270.0) % 360
|
214 |
+
}
|
215 |
+
|
216 |
+
if elevation not in elevation_angles:
|
217 |
+
logger.warning(f"Invalid elevation '{elevation}' for component {component_name} ({component.component_type.value}). "
|
218 |
+
f"Expected one of {list(elevation_angles.keys())}. Using default azimuth=0.")
|
219 |
+
surface_azimuth = 0.0 # Default to north-facing if elevation is invalid
|
220 |
+
else:
|
221 |
+
# Add component rotation to elevation azimuth
|
222 |
+
surface_azimuth = (elevation_angles[elevation] + getattr(component, 'rotation', 0.0)) % 360
|
223 |
+
logger.debug(f"Component {component_name} ({component.component_type.value}): elevation={elevation}, "
|
224 |
+
f"base_azimuth={elevation_angles[elevation]}, rotation={getattr(component, 'rotation', 0.0)}, "
|
225 |
+
f"total_azimuth={surface_azimuth}, tilt={surface_tilt}")
|
226 |
+
|
227 |
+
# Fetch material properties
|
228 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF]:
|
229 |
+
construction = getattr(component, 'construction', None)
|
230 |
+
if not construction:
|
231 |
+
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). "
|
232 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
233 |
else:
|
234 |
+
# Get construction from library or project
|
235 |
+
construction_obj = None
|
236 |
+
if hasattr(construction, 'name'):
|
237 |
+
construction_obj = (project_constructions.get(construction.name) or
|
238 |
+
material_library.library_constructions.get(construction.name))
|
239 |
+
|
240 |
+
if not construction_obj:
|
241 |
+
logger.warning(f"Construction not found for {component_name} ({component.component_type.value}). "
|
242 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
243 |
+
elif not construction_obj.layers:
|
244 |
+
logger.warning(f"No layers in construction for {component_name} ({component.component_type.value}). "
|
245 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
246 |
+
else:
|
247 |
+
# Use first (outermost) layer's properties
|
248 |
+
first_layer = construction_obj.layers[0]
|
249 |
+
material = first_layer.get("material")
|
250 |
+
if material:
|
251 |
+
solar_absorption = getattr(material, 'solar_absorption', 0.6)
|
252 |
+
emissivity = getattr(material, 'emissivity', 0.9)
|
253 |
+
logger.debug(f"Using first layer material for {component_name} ({component.component_type.value}): "
|
254 |
+
f"solar_absorption={solar_absorption}, emissivity={emissivity}")
|
255 |
+
|
256 |
+
elif component.component_type == ComponentType.DOOR:
|
257 |
+
door_material = getattr(component, 'door_material', None)
|
258 |
+
if not door_material:
|
259 |
+
logger.warning(f"No door material defined for {component_name} ({component.component_type.value}). "
|
260 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
261 |
+
else:
|
262 |
+
# Get door material from library or project
|
263 |
+
door_material_obj = None
|
264 |
+
if hasattr(door_material, 'name'):
|
265 |
+
door_material_obj = (project_door_materials.get(door_material.name) or
|
266 |
+
material_library.library_door_materials.get(door_material.name))
|
267 |
+
|
268 |
+
if not door_material_obj:
|
269 |
+
logger.warning(f"Door material not found for {component_name} ({component.component_type.value}). "
|
270 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
271 |
+
else:
|
272 |
+
solar_absorption = getattr(door_material_obj, 'solar_absorption', 0.6)
|
273 |
+
emissivity = getattr(door_material_obj, 'emissivity', 0.9)
|
274 |
+
logger.debug(f"Using door material for {component_name} ({component.component_type.value}): "
|
275 |
+
f"solar_absorption={solar_absorption}, emissivity={emissivity}")
|
276 |
+
|
277 |
+
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
278 |
+
glazing_material = getattr(component, 'glazing_material', None)
|
279 |
+
if not glazing_material:
|
280 |
+
logger.warning(f"No glazing material defined for {component_name} ({component.component_type.value}). "
|
281 |
+
f"Using default SHGC=0.7, h_o={h_o}.")
|
282 |
+
shgc = 0.7
|
283 |
+
else:
|
284 |
+
# Get glazing material from library or project
|
285 |
+
glazing_material_obj = None
|
286 |
+
if hasattr(glazing_material, 'name'):
|
287 |
+
glazing_material_obj = (project_glazing_materials.get(glazing_material.name) or
|
288 |
+
material_library.library_glazing_materials.get(glazing_material.name))
|
289 |
+
|
290 |
+
if not glazing_material_obj:
|
291 |
+
logger.warning(f"Glazing material not found for {component_name} ({component.component_type.value}). "
|
292 |
+
f"Using default SHGC=0.7, h_o={h_o}.")
|
293 |
+
shgc = 0.7
|
294 |
+
else:
|
295 |
+
shgc = getattr(glazing_material_obj, 'shgc', 0.7)
|
296 |
+
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
297 |
+
logger.debug(f"Using glazing material for {component_name} ({component.component_type.value}): "
|
298 |
+
f"shgc={shgc}, h_o={h_o}")
|
299 |
+
emissivity = None # Not used for glazing
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Error retrieving surface parameters for {component_name} ({component.component_type.value}): {str(e)}")
|
303 |
+
# Apply defaults based on component type
|
304 |
+
if component.component_type == ComponentType.ROOF:
|
305 |
+
surface_tilt = 0.0 # Horizontal, upward
|
306 |
+
h_o = 23.0 # W/m²·K for roofs
|
307 |
+
surface_azimuth = 0.0 # Default north
|
308 |
+
elif component.component_type == ComponentType.SKYLIGHT:
|
309 |
+
surface_tilt = 0.0 # Horizontal, upward
|
310 |
+
h_o = 23.0 # W/m²·K for skylights
|
311 |
+
surface_azimuth = 0.0 # Default north
|
312 |
+
elif component.component_type == ComponentType.FLOOR:
|
313 |
+
surface_tilt = 180.0 # Horizontal, downward
|
314 |
+
h_o = 17.0 # W/m²·K
|
315 |
+
surface_azimuth = 0.0 # Default north
|
316 |
+
else: # WALL, DOOR, WINDOW
|
317 |
+
surface_tilt = 90.0 # Vertical
|
318 |
+
h_o = 17.0 # W/m²·K
|
319 |
+
surface_azimuth = 0.0 # Default north
|
320 |
+
|
321 |
+
# Apply material defaults
|
322 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.DOOR]:
|
323 |
+
solar_absorption = 0.6
|
324 |
+
emissivity = 0.9
|
325 |
+
else: # WINDOW, SKYLIGHT
|
326 |
+
shgc = 0.7
|
327 |
+
emissivity = None
|
328 |
+
|
329 |
+
# Debug output for all components
|
330 |
+
logger.info(f"Final surface parameters for {component_name} ({component.component_type.value}): "
|
331 |
+
f"tilt={surface_tilt:.1f}, azimuth={surface_azimuth:.1f}, h_o={h_o:.1f}")
|
332 |
+
|
333 |
+
return surface_tilt, surface_azimuth, h_o, emissivity, solar_absorption
|
334 |
+
|
335 |
+
@staticmethod
|
336 |
+
def calculate_solar_load(component, hourly_data: Dict, hour: int, building_orientation: float, mode: str = "none") -> float:
|
337 |
+
"""Calculate solar load in kW (cooling only) using ASHRAE-compliant solar calculations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
Args:
|
340 |
+
component: Component object with area, component_type, elevation, glazing_material, shgc, iac.
|
341 |
+
hourly_data (Dict): Hourly weather data including solar radiation.
|
342 |
+
hour (int): Current hour.
|
343 |
+
building_orientation (float): Building orientation angle in degrees.
|
344 |
+
mode (str): Operating mode ('cooling', 'heating', 'none').
|
345 |
+
|
346 |
+
Returns:
|
347 |
+
float: Solar cooling load in kW. Returns 0 for non-cooling modes or non-fenestration components.
|
348 |
+
|
349 |
+
References:
|
350 |
+
ASHRAE Handbook—Fundamentals, Chapters 15 and 18.
|
351 |
+
"""
|
352 |
+
# Only calculate solar loads in cooling mode
|
353 |
+
if mode != "cooling":
|
354 |
+
return 0
|
355 |
+
|
356 |
+
# Skip floors for solar calculation
|
357 |
+
if component.component_type == ComponentType.FLOOR:
|
358 |
+
return 0
|
359 |
+
|
360 |
+
component_name = getattr(component, 'name', 'unnamed_component')
|
361 |
+
|
362 |
+
try:
|
363 |
+
# Ensure MaterialLibrary is properly initialized and accessible
|
364 |
+
material_library = st.session_state.get("material_library")
|
365 |
+
if not material_library:
|
366 |
+
logger.error(f"MaterialLibrary not found in session_state for {component_name} ({component.component_type.value})")
|
367 |
+
# Instead of raising an error, initialize a new MaterialLibrary
|
368 |
+
from data.material_library import MaterialLibrary
|
369 |
+
material_library = MaterialLibrary()
|
370 |
+
st.session_state.material_library = material_library
|
371 |
+
logger.info(f"Created new MaterialLibrary for {component_name} ({component.component_type.value})")
|
372 |
|
373 |
+
project_materials = st.session_state.get("project_materials", {})
|
374 |
+
project_constructions = st.session_state.get("project_constructions", {})
|
375 |
+
project_glazing_materials = st.session_state.get("project_glazing_materials", {})
|
376 |
+
project_door_materials = st.session_state.get("project_door_materials", {})
|
377 |
+
|
378 |
+
# Get location parameters from climate_data
|
379 |
+
climate_data = st.session_state.get("climate_data", {})
|
380 |
+
latitude = climate_data.get("latitude", 0.0)
|
381 |
+
longitude = climate_data.get("longitude", 0.0)
|
382 |
+
timezone = climate_data.get("time_zone", 0.0)
|
383 |
+
|
384 |
+
# Get ground reflectivity (default 0.2)
|
385 |
+
ground_reflectivity = st.session_state.get("ground_reflectivity", 0.2)
|
386 |
+
|
387 |
+
# Validate input parameters
|
388 |
+
if not -90 <= latitude <= 90:
|
389 |
+
logger.warning(f"Invalid latitude {latitude} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
390 |
+
latitude = 0.0
|
391 |
+
if not -180 <= longitude <= 180:
|
392 |
+
logger.warning(f"Invalid longitude {longitude} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
393 |
+
longitude = 0.0
|
394 |
+
if not -12 <= timezone <= 14:
|
395 |
+
logger.warning(f"Invalid timezone {timezone} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
396 |
+
timezone = 0.0
|
397 |
+
if not 0 <= ground_reflectivity <= 1:
|
398 |
+
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name} ({component.component_type.value}). Using default 0.2.")
|
399 |
+
ground_reflectivity = 0.2
|
400 |
+
|
401 |
+
# Ensure hourly_data has required fields
|
402 |
+
required_fields = ["month", "day", "hour", "global_horizontal_radiation", "direct_normal_radiation",
|
403 |
+
"diffuse_horizontal_radiation", "dry_bulb"]
|
404 |
+
if not all(field in hourly_data for field in required_fields):
|
405 |
+
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name} ({component.component_type.value}): {hourly_data}")
|
406 |
+
return 0
|
407 |
+
|
408 |
+
# Skip if GHI <= 0
|
409 |
+
if hourly_data["global_horizontal_radiation"] <= 0:
|
410 |
+
logger.info(f"No solar load for hour {hour} due to GHI={hourly_data['global_horizontal_radiation']} for {component_name} ({component.component_type.value})")
|
411 |
+
return 0
|
412 |
+
|
413 |
+
# Extract weather data
|
414 |
+
month = hourly_data["month"]
|
415 |
+
day = hourly_data["day"]
|
416 |
+
hour = hourly_data["hour"]
|
417 |
+
ghi = hourly_data["global_horizontal_radiation"]
|
418 |
+
dni = hourly_data.get("direct_normal_radiation", ghi * 0.7) # Fallback: estimate DNI
|
419 |
+
dhi = hourly_data.get("diffuse_horizontal_radiation", ghi * 0.3) # Fallback: estimate DHI
|
420 |
+
outdoor_temp = hourly_data["dry_bulb"]
|
421 |
+
|
422 |
+
if ghi < 0 or dni < 0 or dhi < 0:
|
423 |
+
logger.error(f"Negative radiation values for {month}/{day}/{hour} for {component_name} ({component.component_type.value})")
|
424 |
+
raise ValueError(f"Negative radiation values for {month}/{day}/{hour}")
|
425 |
+
|
426 |
+
# Add detailed logging for solar calculation
|
427 |
+
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
428 |
+
f"dry_bulb={outdoor_temp} for {component_name} ({component.component_type.value})")
|
429 |
+
|
430 |
+
# Step 1: Local Solar Time (LST) with Equation of Time
|
431 |
+
year = 2025 # Fixed year since not provided
|
432 |
+
n = TFMCalculations.day_of_year(month, day, year)
|
433 |
+
EOT = TFMCalculations.equation_of_time(n)
|
434 |
+
lambda_std = 15 * timezone # Standard meridian longitude (°)
|
435 |
+
standard_time = hour - 1 + 0.5 # Convert to decimal, assume mid-hour
|
436 |
+
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
437 |
+
|
438 |
+
# Step 2: Solar Declination (δ)
|
439 |
+
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
440 |
+
|
441 |
+
# Step 3: Hour Angle (HRA)
|
442 |
+
hra = 15 * (LST - 12)
|
443 |
+
|
444 |
+
# Step 4: Solar Altitude (α) and Azimuth (ψ)
|
445 |
+
phi = math.radians(latitude)
|
446 |
+
delta_rad = math.radians(delta)
|
447 |
+
hra_rad = math.radians(hra)
|
448 |
+
|
449 |
+
sin_alpha = math.sin(phi) * math.sin(delta_rad) + math.cos(phi) * math.cos(delta_rad) * math.cos(hra_rad)
|
450 |
+
alpha = math.degrees(math.asin(sin_alpha))
|
451 |
+
|
452 |
+
if abs(math.cos(math.radians(alpha))) < 0.01:
|
453 |
+
azimuth = 0 # North at sunrise/sunset
|
454 |
else:
|
455 |
+
sin_az = math.cos(delta_rad) * math.sin(hra_rad) / math.cos(math.radians(alpha))
|
456 |
+
cos_az = (sin_alpha * math.sin(phi) - math.sin(delta_rad)) / (math.cos(math.radians(alpha)) * math.cos(phi))
|
457 |
+
azimuth = math.degrees(math.atan2(sin_az, cos_az))
|
458 |
+
if hra > 0: # Afternoon
|
459 |
+
azimuth = 360 - azimuth if azimuth > 0 else -azimuth
|
460 |
+
|
461 |
+
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
462 |
+
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name} ({component.component_type.value})")
|
463 |
+
|
464 |
+
# Step 5: Get surface parameters with robust error handling
|
465 |
+
building_info = {"orientation_angle": building_orientation}
|
466 |
+
try:
|
467 |
+
surface_tilt, surface_azimuth, h_o, emissivity, solar_absorption = \
|
468 |
+
TFMCalculations.get_surface_parameters(
|
469 |
+
component, building_info, material_library, project_materials,
|
470 |
+
project_constructions, project_glazing_materials, project_door_materials
|
471 |
+
)
|
472 |
+
except Exception as e:
|
473 |
+
logger.error(f"Error getting surface parameters for {component_name}: {str(e)}. Using defaults.")
|
474 |
+
# Apply defaults based on component type
|
475 |
+
if component.component_type == ComponentType.ROOF:
|
476 |
+
surface_tilt = 0.0 # Horizontal, upward
|
477 |
+
surface_azimuth = 0.0 # Default north
|
478 |
+
elif component.component_type == ComponentType.SKYLIGHT:
|
479 |
+
surface_tilt = 0.0 # Horizontal, upward
|
480 |
+
surface_azimuth = 0.0 # Default north
|
481 |
+
elif component.component_type == ComponentType.FLOOR:
|
482 |
+
surface_tilt = 180.0 # Horizontal, downward
|
483 |
+
surface_azimuth = 0.0 # Default north
|
484 |
+
else: # WALL, DOOR, WINDOW
|
485 |
+
surface_tilt = 90.0 # Vertical
|
486 |
+
surface_azimuth = 0.0 # Default north
|
487 |
|
488 |
+
# Apply material defaults
|
489 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.DOOR]:
|
490 |
+
solar_absorption = 0.6
|
491 |
+
h_o = 17.0 if component.component_type == ComponentType.WALL else 23.0
|
492 |
+
else: # WINDOW, SKYLIGHT
|
493 |
+
solar_absorption = 0.0 # Not used for glazing
|
494 |
+
h_o = 17.0 if component.component_type == ComponentType.WINDOW else 23.0
|
495 |
+
|
496 |
+
# Step 6: Calculate angle of incidence (θ)
|
497 |
+
# Convert angles to radians for calculation
|
498 |
+
alpha_rad = math.radians(alpha)
|
499 |
+
surface_tilt_rad = math.radians(surface_tilt)
|
500 |
+
azimuth_rad = math.radians(azimuth)
|
501 |
+
surface_azimuth_rad = math.radians(surface_azimuth)
|
502 |
+
|
503 |
+
# Calculate cos(θ) using the solar position and surface orientation
|
504 |
+
cos_theta = (math.sin(alpha_rad) * math.cos(surface_tilt_rad) +
|
505 |
+
math.cos(alpha_rad) * math.sin(surface_tilt_rad) *
|
506 |
+
math.cos(azimuth_rad - surface_azimuth_rad))
|
507 |
+
|
508 |
+
# Clamp to [0, 1] to avoid numerical issues
|
509 |
+
cos_theta = max(min(cos_theta, 1.0), 0.0)
|
510 |
+
|
511 |
+
# Log the calculated values
|
512 |
+
logger.info(f" Component {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
513 |
+
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
514 |
+
f"cos_theta={cos_theta:.4f}")
|
515 |
+
|
516 |
+
# Step 7: Calculate total incident radiation (I_t)
|
517 |
+
# Calculate view factor for ground-reflected radiation
|
518 |
+
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
519 |
+
|
520 |
+
# Calculate ground-reflected radiation
|
521 |
+
ground_reflected = ground_reflectivity * ghi * view_factor
|
522 |
+
|
523 |
+
# Calculate total incident radiation
|
524 |
+
if cos_theta > 0: # Surface receives direct beam radiation
|
525 |
+
I_t = dni * cos_theta + dhi + ground_reflected
|
526 |
+
else: # Surface in shade, only diffuse and reflected
|
527 |
+
I_t = dhi + ground_reflected
|
528 |
+
|
529 |
+
# Step 8: Calculate solar heat gain based on component type
|
530 |
+
solar_heat_gain = 0.0
|
531 |
+
|
532 |
+
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
533 |
+
# For windows/skylights, get SHGC from material
|
534 |
+
shgc = 0.7 # Default
|
535 |
+
glazing_material = getattr(component, 'glazing_material', None)
|
536 |
+
if glazing_material:
|
537 |
+
glazing_material_obj = None
|
538 |
+
if hasattr(glazing_material, 'name'):
|
539 |
+
glazing_material_obj = (project_glazing_materials.get(glazing_material.name) or
|
540 |
+
material_library.library_glazing_materials.get(glazing_material.name))
|
541 |
+
|
542 |
+
if glazing_material_obj:
|
543 |
+
shgc = getattr(glazing_material_obj, 'shgc', 0.7)
|
544 |
+
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
545 |
+
else:
|
546 |
+
logger.warning(f"Glazing material not found for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
547 |
else:
|
548 |
+
logger.warning(f"No glazing material defined for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
549 |
+
|
550 |
+
# Get glazing type for dynamic SHGC calculation
|
551 |
+
glazing_type = "Single Clear" # Default
|
552 |
+
if hasattr(component, 'name') and component.name in TFMCalculations.GLAZING_TYPE_MAPPING:
|
553 |
+
glazing_type = TFMCalculations.GLAZING_TYPE_MAPPING[component.name]
|
554 |
+
|
555 |
+
# Get internal shading coefficient
|
556 |
+
iac = getattr(component, 'iac', 1.0) # Default internal shading
|
557 |
+
|
558 |
+
# Calculate dynamic SHGC based on incidence angle
|
559 |
+
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
560 |
+
|
561 |
+
# Calculate solar heat gain for fenestration
|
562 |
+
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000 # kW
|
563 |
+
|
564 |
+
logger.info(f"Fenestration solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
565 |
+
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
566 |
+
f"I_t={I_t:.2f}, iac={iac})")
|
567 |
+
|
568 |
+
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.DOOR]:
|
569 |
+
# For opaque surfaces, use solar absorptivity and surface resistance
|
570 |
+
surface_resistance = 1/h_o # m²·K/W
|
571 |
+
|
572 |
+
# Calculate absorbed solar radiation
|
573 |
+
solar_heat_gain = component.area * solar_absorption * I_t * surface_resistance / 1000 # kW
|
574 |
+
|
575 |
+
logger.info(f"Opaque surface solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
576 |
+
f"{solar_heat_gain:.4f} kW (area={component.area}, solar_absorption={solar_absorption:.2f}, "
|
577 |
+
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
578 |
|
579 |
+
return solar_heat_gain
|
580 |
+
|
581 |
+
except Exception as e:
|
582 |
+
logger.error(f"Error calculating solar load for {component_name} ({component.component_type.value}) at hour {hour}: {str(e)}")
|
583 |
+
return 0
|
584 |
+
|
585 |
+
@staticmethod
|
586 |
+
def calculate_internal_load(internal_loads: Dict, hour: int, operation_hours: int, area: float) -> float:
|
587 |
+
"""Calculate total internal load in kW."""
|
588 |
+
total_load = 0
|
589 |
+
for group in internal_loads.get("people", []):
|
590 |
+
activity_data = group["activity_data"]
|
591 |
+
sensible = (activity_data["sensible_min_w"] + activity_data["sensible_max_w"]) / 2
|
592 |
+
latent = (activity_data["latent_min_w"] + activity_data["latent_max_w"]) / 2
|
593 |
+
load_per_person = sensible + latent
|
594 |
+
total_load += group["num_people"] * load_per_person * group["diversity_factor"]
|
595 |
+
for light in internal_loads.get("lighting", []):
|
596 |
+
lpd = light["lpd"]
|
597 |
+
lighting_operating_hours = light["operating_hours"]
|
598 |
+
fraction = min(lighting_operating_hours, operation_hours) / operation_hours if operation_hours > 0 else 0
|
599 |
+
lighting_load = lpd * area * fraction
|
600 |
+
total_load += lighting_load
|
601 |
+
equipment = internal_loads.get("equipment")
|
602 |
+
if equipment:
|
603 |
+
total_power_density = equipment.get("total_power_density", 0)
|
604 |
+
equipment_load = total_power_density * area
|
605 |
+
total_load += equipment_load
|
606 |
+
return total_load / 1000
|
607 |
+
|
608 |
+
@staticmethod
|
609 |
+
def calculate_ventilation_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
610 |
+
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
611 |
+
if mode == "none":
|
612 |
+
return 0, 0
|
613 |
+
ventilation = internal_loads.get("ventilation")
|
614 |
+
if not ventilation:
|
615 |
+
return 0, 0
|
616 |
+
space_rate = ventilation.get("space_rate", 0.3) # L/s/m²
|
617 |
+
people_rate = ventilation.get("people_rate", 2.5) # L/s/person
|
618 |
+
num_people = sum(group["num_people"] for group in internal_loads.get("people", []))
|
619 |
+
ventilation_flow = (space_rate * area + people_rate * num_people) / 1000 # m³/s
|
620 |
+
air_density = 1.2 # kg/m³
|
621 |
+
specific_heat = 1000 # J/kg·K
|
622 |
+
delta_t = outdoor_temp - indoor_temp
|
623 |
+
if mode == "cooling" and delta_t <= 0:
|
624 |
+
return 0, 0
|
625 |
+
if mode == "heating" and delta_t >= 0:
|
626 |
+
return 0, 0
|
627 |
+
load = ventilation_flow * air_density * specific_heat * delta_t / 1000 # kW
|
628 |
+
cooling_load = load if mode == "cooling" else 0
|
629 |
+
heating_load = -load if mode == "heating" else 0
|
630 |
+
return cooling_load, heating_load
|
631 |
+
|
632 |
+
@staticmethod
|
633 |
+
def calculate_infiltration_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
634 |
+
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
635 |
+
if mode == "none":
|
636 |
+
return 0, 0
|
637 |
+
infiltration = internal_loads.get("infiltration")
|
638 |
+
if not infiltration:
|
639 |
+
return 0, 0
|
640 |
+
method = infiltration.get("method", "ACH")
|
641 |
+
settings = infiltration.get("settings", {})
|
642 |
+
building_height = building_info.get("building_height", 3.0)
|
643 |
+
volume = area * building_height # m³
|
644 |
+
air_density = 1.2 # kg/m³
|
645 |
+
specific_heat = 1000 # J/kg·K
|
646 |
+
delta_t = outdoor_temp - indoor_temp
|
647 |
+
if mode == "cooling" and delta_t <= 0:
|
648 |
+
return 0, 0
|
649 |
+
if mode == "heating" and delta_t >= 0:
|
650 |
+
return 0, 0
|
651 |
+
if method == "ACH":
|
652 |
+
ach = settings.get("rate", 0.5)
|
653 |
+
infiltration_flow = ach * volume / 3600 # m³/s
|
654 |
+
elif method == "Crack Flow":
|
655 |
+
ela = settings.get("ela", 0.0001) # m²/m²
|
656 |
+
wind_speed = 4.0 # m/s (assumed)
|
657 |
+
infiltration_flow = ela * area * wind_speed / 2 # m³/s
|
658 |
+
else: # Empirical Equations
|
659 |
+
c = settings.get("c", 0.1)
|
660 |
+
n = settings.get("n", 0.65)
|
661 |
+
delta_t_abs = abs(delta_t)
|
662 |
+
infiltration_flow = c * (delta_t_abs ** n) * area / 3600 # m³/s
|
663 |
+
load = infiltration_flow * air_density * specific_heat * delta_t / 1000 # kW
|
664 |
+
cooling_load = load if mode == "cooling" else 0
|
665 |
+
heating_load = -load if mode == "heating" else 0
|
666 |
+
return cooling_load, heating_load
|
667 |
+
|
668 |
+
@staticmethod
|
669 |
+
def get_adaptive_comfort_temp(outdoor_temp: float) -> float:
|
670 |
+
"""Calculate adaptive comfort temperature per ASHRAE 55."""
|
671 |
+
if 10 <= outdoor_temp <= 33.5:
|
672 |
+
return 0.31 * outdoor_temp + 17.8
|
673 |
+
return 24.0 # Default to standard setpoint if outside range
|
674 |
+
|
675 |
+
@staticmethod
|
676 |
+
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
677 |
+
"""Filter hourly data based on simulation period, ignoring year."""
|
678 |
+
if sim_period["type"] == "Full Year":
|
679 |
+
return hourly_data
|
680 |
+
filtered_data = []
|
681 |
+
if sim_period["type"] == "From-to":
|
682 |
+
start_month = sim_period["start_date"].month
|
683 |
+
start_day = sim_period["start_date"].day
|
684 |
+
end_month = sim_period["end_date"].month
|
685 |
+
end_day = sim_period["end_date"].day
|
686 |
+
for data in hourly_data:
|
687 |
+
month, day = data["month"], data["day"]
|
688 |
+
if (month > start_month or (month == start_month and day >= start_day)) and \
|
689 |
+
(month < end_month or (month == end_month and day <= end_day)):
|
690 |
+
filtered_data.append(data)
|
691 |
+
elif sim_period["type"] in ["HDD", "CDD"]:
|
692 |
+
base_temp = sim_period.get("base_temp", 18.3 if sim_period["type"] == "HDD" else 23.9)
|
693 |
+
for data in hourly_data:
|
694 |
+
temp = data["dry_bulb"]
|
695 |
+
if (sim_period["type"] == "HDD" and temp < base_temp) or (sim_period["type"] == "CDD" and temp > base_temp):
|
696 |
+
filtered_data.append(data)
|
697 |
+
return filtered_data
|
698 |
+
|
699 |
+
@staticmethod
|
700 |
+
def get_indoor_conditions(indoor_conditions: Dict, hour: int, outdoor_temp: float) -> Dict:
|
701 |
+
"""Determine indoor conditions based on user settings."""
|
702 |
+
if indoor_conditions["type"] == "Fixed":
|
703 |
+
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
704 |
+
if mode == "cooling":
|
705 |
+
return {
|
706 |
+
"temperature": indoor_conditions.get("cooling_setpoint", {}).get("temperature", 24.0),
|
707 |
+
"rh": indoor_conditions.get("cooling_setpoint", {}).get("rh", 50.0)
|
708 |
+
}
|
709 |
+
elif mode == "heating":
|
710 |
+
return {
|
711 |
+
"temperature": indoor_conditions.get("heating_setpoint", {}).get("temperature", 22.0),
|
712 |
+
"rh": indoor_conditions.get("heating_setpoint", {}).get("rh", 50.0)
|
713 |
+
}
|
714 |
else:
|
715 |
+
return {"temperature": 24.0, "rh": 50.0}
|
716 |
+
elif indoor_conditions["type"] == "Time-varying":
|
717 |
+
schedule = indoor_conditions.get("schedule", [])
|
718 |
+
if schedule:
|
719 |
+
hour_idx = hour % 24
|
720 |
+
for entry in schedule:
|
721 |
+
if entry["hour"] == hour_idx:
|
722 |
+
return {"temperature": entry["temperature"], "rh": entry["rh"]}
|
723 |
+
return {"temperature": 24.0, "rh": 50.0}
|
724 |
+
else: # Adaptive
|
725 |
+
return {"temperature": TFMCalculations.get_adaptive_comfort_temp(outdoor_temp), "rh": 50.0}
|
726 |
+
|
727 |
+
@staticmethod
|
728 |
+
def calculate_tfm_loads(components: Dict, hourly_data: List[Dict], indoor_conditions: Dict, internal_loads: Dict, building_info: Dict, sim_period: Dict, hvac_settings: Dict) -> List[Dict]:
|
729 |
+
"""Calculate TFM loads for heating and cooling with user-defined filters and temperature threshold."""
|
730 |
+
filtered_data = TFMCalculations.filter_hourly_data(hourly_data, sim_period, building_info)
|
731 |
+
temp_loads = []
|
732 |
+
building_orientation = building_info.get("orientation_angle", 0.0)
|
733 |
+
operating_periods = hvac_settings.get("operating_hours", [{"start": 8, "end": 18}])
|
734 |
+
area = building_info.get("floor_area", 100.0)
|
735 |
+
|
736 |
+
# Ensure MaterialLibrary is properly initialized
|
737 |
+
if "material_library" not in st.session_state:
|
738 |
+
from data.material_library import MaterialLibrary
|
739 |
+
st.session_state.material_library = MaterialLibrary()
|
740 |
+
logger.info("Initialized MaterialLibrary in session_state for solar calculations")
|
741 |
+
|
742 |
+
# Pre-calculate CTF coefficients for all components using CTFCalculator
|
743 |
+
for comp_list in components.values():
|
744 |
+
for comp in comp_list:
|
745 |
+
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
746 |
+
|
747 |
+
for hour_data in filtered_data:
|
748 |
+
hour = hour_data["hour"]
|
749 |
+
outdoor_temp = hour_data["dry_bulb"]
|
750 |
+
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp)
|
751 |
+
indoor_temp = indoor_cond["temperature"]
|
752 |
+
# Initialize all loads to 0
|
753 |
+
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
754 |
+
# Check if hour is within operating periods
|
755 |
+
is_operating = False
|
756 |
+
for period in operating_periods:
|
757 |
+
start_hour = period.get("start", 8)
|
758 |
+
end_hour = period.get("end", 18)
|
759 |
+
if start_hour <= hour % 24 <= end_hour:
|
760 |
+
is_operating = True
|
761 |
+
break
|
762 |
+
# Determine mode based on temperature threshold (18°C)
|
763 |
+
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
764 |
+
if is_operating and mode == "cooling":
|
765 |
+
# Calculate solar load for each component and accumulate
|
766 |
+
for comp_list in components.values():
|
767 |
+
for comp in comp_list:
|
768 |
+
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
769 |
+
conduction_cooling += cool_load
|
770 |
+
|
771 |
+
# Calculate solar load for each component and accumulate
|
772 |
+
component_solar_load = TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
773 |
+
solar += component_solar_load
|
774 |
+
|
775 |
+
# Add detailed logging for solar load accumulation
|
776 |
+
logger.info(f"Component {comp.name} ({comp.component_type.value}) solar load: {component_solar_load:.3f} kW, accumulated solar: {solar:.3f} kW")
|
777 |
|
778 |
+
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
779 |
+
ventilation_cooling, _ = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
780 |
+
infiltration_cooling, _ = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
781 |
+
elif is_operating and mode == "heating":
|
782 |
+
for comp_list in components.values():
|
783 |
+
for comp in comp_list:
|
784 |
+
_, heat_load = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="heating")
|
785 |
+
conduction_heating += heat_load
|
786 |
+
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
787 |
+
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
788 |
+
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
789 |
+
else: # mode == "none" or not is_operating
|
790 |
+
internal = 0 # No internal loads when no heating or cooling is needed or outside operating hours
|
791 |
+
|
792 |
+
# Add detailed logging for total loads
|
793 |
+
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
794 |
+
|
795 |
+
# Calculate total loads, subtracting internal load for heating
|
796 |
+
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
797 |
+
total_heating = max(conduction_heating + ventilation_heating + infiltration_heating - internal, 0)
|
798 |
+
# Enforce mutual exclusivity within hour
|
799 |
+
if mode == "cooling":
|
800 |
+
total_heating = 0
|
801 |
+
elif mode == "heating":
|
802 |
+
total_cooling = 0
|
803 |
+
temp_loads.append({
|
804 |
+
"hour": hour,
|
805 |
+
"month": hour_data["month"],
|
806 |
+
"day": hour_data["day"],
|
807 |
+
"conduction_cooling": conduction_cooling,
|
808 |
+
"conduction_heating": conduction_heating,
|
809 |
+
"solar": solar,
|
810 |
+
"internal": internal,
|
811 |
+
"ventilation_cooling": ventilation_cooling,
|
812 |
+
"ventilation_heating": ventilation_heating,
|
813 |
+
"infiltration_cooling": infiltration_cooling,
|
814 |
+
"infiltration_heating": infiltration_heating,
|
815 |
+
"total_cooling": total_cooling,
|
816 |
+
"total_heating": total_heating
|
817 |
+
})
|
818 |
+
# Group loads by day and apply daily control
|
819 |
+
loads_by_day = defaultdict(list)
|
820 |
+
for load in temp_loads:
|
821 |
+
day_key = (load["month"], load["day"])
|
822 |
+
loads_by_day[day_key].append(load)
|
823 |
+
final_loads = []
|
824 |
+
for day_key, day_loads in loads_by_day.items():
|
825 |
+
# Count hours with non-zero cooling and heating loads
|
826 |
+
cooling_hours = sum(1 for load in day_loads if load["total_cooling"] > 0)
|
827 |
+
heating_hours = sum(1 for load in day_loads if load["total_heating"] > 0)
|
828 |
+
# Apply daily control
|
829 |
+
for load in day_loads:
|
830 |
+
if cooling_hours > heating_hours:
|
831 |
+
load["total_heating"] = 0 # Keep cooling components, zero heating total
|
832 |
+
elif heating_hours > cooling_hours:
|
833 |
+
load["total_cooling"] = 0 # Keep heating components, zero cooling total
|
834 |
+
else: # Equal hours
|
835 |
+
load["total_cooling"] = 0
|
836 |
+
load["total_heating"] = 0 # Zero both totals, keep components
|
837 |
+
final_loads.append(load)
|
838 |
+
return final_loads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|