Spaces:
Sleeping
Sleeping
Update app/hvac_loads.py
Browse files- app/hvac_loads.py +106 -201
app/hvac_loads.py
CHANGED
@@ -10,7 +10,7 @@ import pandas as pd
|
|
10 |
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
11 |
from enum import Enum
|
12 |
import streamlit as st
|
13 |
-
from app.material_library import Construction, GlazingMaterial,
|
14 |
from app.internal_loads import PEOPLE_ACTIVITY_LEVELS, DIVERSITY_FACTORS, LIGHTING_FIXTURE_TYPES, EQUIPMENT_HEAT_GAINS, VENTILATION_RATES, INFILTRATION_SETTINGS
|
15 |
from datetime import datetime
|
16 |
from collections import defaultdict
|
@@ -23,7 +23,7 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
class TFMCalculations:
|
26 |
-
# Solar calculation constants (from solar.py)
|
27 |
SHGC_COEFFICIENTS = {
|
28 |
"Single Clear": [0.1, -0.0, 0.0, -0.0, 0.0, 0.87],
|
29 |
"Single Tinted": [0.12, -0.0, 0.0, -0.0, 0.8, -0.0],
|
@@ -140,51 +140,49 @@ class TFMCalculations:
|
|
140 |
@staticmethod
|
141 |
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
142 |
project_materials: Dict, project_constructions: Dict,
|
143 |
-
project_glazing_materials: Dict
|
144 |
"""
|
145 |
-
Determine surface parameters (tilt, azimuth, h_o, emissivity,
|
146 |
-
Uses MaterialLibrary to fetch properties from first layer for walls/roofs,
|
147 |
-
|
148 |
-
- Walls,
|
149 |
-
- Roofs, Skylights: Azimuth = component.orientation; Tilt = component.tilt (default
|
|
|
150 |
|
151 |
Args:
|
152 |
component: Component object with component_type, elevation, rotation, orientation, tilt,
|
153 |
-
construction,
|
154 |
building_info (Dict): Building information containing orientation_angle for elevation mapping.
|
155 |
material_library: MaterialLibrary instance for accessing library materials/constructions.
|
156 |
project_materials: Dict of project-specific Material objects.
|
157 |
project_constructions: Dict of project-specific Construction objects.
|
158 |
project_glazing_materials: Dict of project-specific GlazingMaterial objects.
|
159 |
-
project_door_materials: Dict of project-specific DoorMaterial objects.
|
160 |
|
161 |
Returns:
|
162 |
Tuple[float, float, float, Optional[float], float]: Surface tilt (掳), surface azimuth (掳),
|
163 |
-
h_o (W/m虏路K), emissivity,
|
164 |
"""
|
165 |
# Default parameters
|
166 |
component_name = getattr(component, 'name', 'unnamed_component')
|
167 |
|
168 |
# Initialize default values
|
169 |
-
surface_tilt = 90.0 # Default vertical for walls, windows
|
170 |
surface_azimuth = 0.0 # Default north-facing
|
171 |
h_o = 17.0 # Default exterior convection coefficient
|
172 |
emissivity = 0.9 # Default for opaque components
|
173 |
-
|
174 |
|
175 |
try:
|
176 |
# Set component-specific defaults based on type
|
177 |
if component.component_type == ComponentType.ROOF:
|
178 |
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
179 |
h_o = 23.0 # W/m虏路K for roofs
|
180 |
-
# For roofs, use orientation directly
|
181 |
surface_azimuth = getattr(component, 'orientation', 0.0)
|
182 |
logger.debug(f"Roof component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
183 |
|
184 |
elif component.component_type == ComponentType.SKYLIGHT:
|
185 |
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
186 |
h_o = 23.0 # W/m虏路K for skylights
|
187 |
-
# For skylights, use orientation directly, not elevation
|
188 |
surface_azimuth = getattr(component, 'orientation', 0.0)
|
189 |
logger.debug(f"Skylight component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
190 |
|
@@ -194,17 +192,14 @@ class TFMCalculations:
|
|
194 |
surface_azimuth = 0.0 # Default azimuth for floors
|
195 |
logger.debug(f"Floor component {component_name}: using default azimuth={surface_azimuth}, tilt={surface_tilt}")
|
196 |
|
197 |
-
else: # WALL,
|
198 |
surface_tilt = 90.0 # Vertical
|
199 |
h_o = 17.0 # W/m虏路K
|
200 |
-
|
201 |
-
# Check for elevation attribute
|
202 |
elevation = getattr(component, 'elevation', None)
|
203 |
if not elevation:
|
204 |
logger.warning(f"Component {component_name} ({component.component_type.value}) is missing 'elevation' field. Using default azimuth=0.")
|
205 |
-
surface_azimuth = 0.0
|
206 |
else:
|
207 |
-
# Define elevation azimuths based on building orientation_angle
|
208 |
base_azimuth = building_info.get("orientation_angle", 0.0)
|
209 |
elevation_angles = {
|
210 |
"A": base_azimuth,
|
@@ -216,9 +211,8 @@ class TFMCalculations:
|
|
216 |
if elevation not in elevation_angles:
|
217 |
logger.warning(f"Invalid elevation '{elevation}' for component {component_name} ({component.component_type.value}). "
|
218 |
f"Expected one of {list(elevation_angles.keys())}. Using default azimuth=0.")
|
219 |
-
surface_azimuth = 0.0
|
220 |
else:
|
221 |
-
# Add component rotation to elevation azimuth
|
222 |
surface_azimuth = (elevation_angles[elevation] + getattr(component, 'rotation', 0.0)) % 360
|
223 |
logger.debug(f"Component {component_name} ({component.component_type.value}): elevation={elevation}, "
|
224 |
f"base_azimuth={elevation_angles[elevation]}, rotation={getattr(component, 'rotation', 0.0)}, "
|
@@ -229,9 +223,8 @@ class TFMCalculations:
|
|
229 |
construction = getattr(component, 'construction', None)
|
230 |
if not construction:
|
231 |
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). "
|
232 |
-
f"Using defaults:
|
233 |
else:
|
234 |
-
# Get construction from library or project
|
235 |
construction_obj = None
|
236 |
if hasattr(construction, 'name'):
|
237 |
construction_obj = (project_constructions.get(construction.name) or
|
@@ -239,40 +232,18 @@ class TFMCalculations:
|
|
239 |
|
240 |
if not construction_obj:
|
241 |
logger.warning(f"Construction not found for {component_name} ({component.component_type.value}). "
|
242 |
-
f"Using defaults:
|
243 |
elif not construction_obj.layers:
|
244 |
logger.warning(f"No layers in construction for {component_name} ({component.component_type.value}). "
|
245 |
-
f"Using defaults:
|
246 |
else:
|
247 |
-
# Use first (outermost) layer's properties
|
248 |
first_layer = construction_obj.layers[0]
|
249 |
material = first_layer.get("material")
|
250 |
if material:
|
251 |
-
|
252 |
emissivity = getattr(material, 'emissivity', 0.9)
|
253 |
logger.debug(f"Using first layer material for {component_name} ({component.component_type.value}): "
|
254 |
-
f"
|
255 |
-
|
256 |
-
elif component.component_type == ComponentType.DOOR:
|
257 |
-
door_material = getattr(component, 'door_material', None)
|
258 |
-
if not door_material:
|
259 |
-
logger.warning(f"No door material defined for {component_name} ({component.component_type.value}). "
|
260 |
-
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
261 |
-
else:
|
262 |
-
# Get door material from library or project
|
263 |
-
door_material_obj = None
|
264 |
-
if hasattr(door_material, 'name'):
|
265 |
-
door_material_obj = (project_door_materials.get(door_material.name) or
|
266 |
-
material_library.library_door_materials.get(door_material.name))
|
267 |
-
|
268 |
-
if not door_material_obj:
|
269 |
-
logger.warning(f"Door material not found for {component_name} ({component.component_type.value}). "
|
270 |
-
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
271 |
-
else:
|
272 |
-
solar_absorption = getattr(door_material_obj, 'solar_absorption', 0.6)
|
273 |
-
emissivity = getattr(door_material_obj, 'emissivity', 0.9)
|
274 |
-
logger.debug(f"Using door material for {component_name} ({component.component_type.value}): "
|
275 |
-
f"solar_absorption={solar_absorption}, emissivity={emissivity}")
|
276 |
|
277 |
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
278 |
glazing_material = getattr(component, 'glazing_material', None)
|
@@ -281,7 +252,6 @@ class TFMCalculations:
|
|
281 |
f"Using default SHGC=0.7, h_o={h_o}.")
|
282 |
shgc = 0.7
|
283 |
else:
|
284 |
-
# Get glazing material from library or project
|
285 |
glazing_material_obj = None
|
286 |
if hasattr(glazing_material, 'name'):
|
287 |
glazing_material_obj = (project_glazing_materials.get(glazing_material.name) or
|
@@ -296,41 +266,37 @@ class TFMCalculations:
|
|
296 |
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
297 |
logger.debug(f"Using glazing material for {component_name} ({component.component_type.value}): "
|
298 |
f"shgc={shgc}, h_o={h_o}")
|
299 |
-
emissivity = None
|
300 |
|
301 |
except Exception as e:
|
302 |
logger.error(f"Error retrieving surface parameters for {component_name} ({component.component_type.value}): {str(e)}")
|
303 |
-
# Apply defaults based on component type
|
304 |
if component.component_type == ComponentType.ROOF:
|
305 |
-
surface_tilt = 0.0
|
306 |
-
h_o = 23.0
|
307 |
-
surface_azimuth = 0.0
|
308 |
elif component.component_type == ComponentType.SKYLIGHT:
|
309 |
-
surface_tilt = 0.0
|
310 |
-
h_o = 23.0
|
311 |
-
surface_azimuth = 0.0
|
312 |
elif component.component_type == ComponentType.FLOOR:
|
313 |
-
surface_tilt = 180.0
|
314 |
-
h_o = 17.0
|
315 |
-
surface_azimuth = 0.0
|
316 |
-
else: # WALL,
|
317 |
-
surface_tilt = 90.0
|
318 |
-
h_o = 17.0
|
319 |
-
surface_azimuth = 0.0
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
solar_absorption = 0.6
|
324 |
emissivity = 0.9
|
325 |
else: # WINDOW, SKYLIGHT
|
326 |
shgc = 0.7
|
327 |
emissivity = None
|
328 |
|
329 |
-
# Debug output for all components
|
330 |
logger.info(f"Final surface parameters for {component_name} ({component.component_type.value}): "
|
331 |
f"tilt={surface_tilt:.1f}, azimuth={surface_azimuth:.1f}, h_o={h_o:.1f}")
|
332 |
-
|
333 |
-
return surface_tilt, surface_azimuth, h_o, emissivity, solar_absorption
|
334 |
|
335 |
@staticmethod
|
336 |
def calculate_solar_load(component, hourly_data: Dict, hour: int, building_orientation: float, mode: str = "none") -> float:
|
@@ -349,42 +315,31 @@ class TFMCalculations:
|
|
349 |
References:
|
350 |
ASHRAE Handbook鈥擣undamentals, Chapters 15 and 18.
|
351 |
"""
|
352 |
-
# Only calculate solar loads in cooling mode
|
353 |
if mode != "cooling":
|
354 |
return 0
|
355 |
|
356 |
-
# Skip floors for solar calculation
|
357 |
if component.component_type == ComponentType.FLOOR:
|
358 |
return 0
|
359 |
|
360 |
component_name = getattr(component, 'name', 'unnamed_component')
|
361 |
|
362 |
try:
|
363 |
-
# Ensure MaterialLibrary is properly initialized and accessible
|
364 |
material_library = st.session_state.get("material_library")
|
365 |
if not material_library:
|
366 |
-
|
367 |
-
# Instead of raising an error, initialize a new MaterialLibrary
|
368 |
-
from data.material_library import MaterialLibrary
|
369 |
material_library = MaterialLibrary()
|
370 |
st.session_state.material_library = material_library
|
371 |
logger.info(f"Created new MaterialLibrary for {component_name} ({component.component_type.value})")
|
372 |
|
373 |
-
project_materials = st.session_state.get("
|
374 |
-
project_constructions = st.session_state.get("
|
375 |
-
project_glazing_materials = st.session_state.get("
|
376 |
-
|
377 |
-
|
378 |
-
# Get location parameters from climate_data
|
379 |
-
climate_data = st.session_state.get("climate_data", {})
|
380 |
latitude = climate_data.get("latitude", 0.0)
|
381 |
longitude = climate_data.get("longitude", 0.0)
|
382 |
timezone = climate_data.get("time_zone", 0.0)
|
|
|
383 |
|
384 |
-
# Get ground reflectivity (default 0.2)
|
385 |
-
ground_reflectivity = st.session_state.get("ground_reflectivity", 0.2)
|
386 |
-
|
387 |
-
# Validate input parameters
|
388 |
if not -90 <= latitude <= 90:
|
389 |
logger.warning(f"Invalid latitude {latitude} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
390 |
latitude = 0.0
|
@@ -398,140 +353,115 @@ class TFMCalculations:
|
|
398 |
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name} ({component.component_type.value}). Using default 0.2.")
|
399 |
ground_reflectivity = 0.2
|
400 |
|
401 |
-
# Ensure hourly_data has required fields
|
402 |
required_fields = ["month", "day", "hour", "global_horizontal_radiation", "direct_normal_radiation",
|
403 |
"diffuse_horizontal_radiation", "dry_bulb"]
|
404 |
if not all(field in hourly_data for field in required_fields):
|
405 |
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name} ({component.component_type.value}): {hourly_data}")
|
406 |
return 0
|
407 |
|
408 |
-
# Skip if GHI <= 0
|
409 |
if hourly_data["global_horizontal_radiation"] <= 0:
|
410 |
logger.info(f"No solar load for hour {hour} due to GHI={hourly_data['global_horizontal_radiation']} for {component_name} ({component.component_type.value})")
|
411 |
return 0
|
412 |
|
413 |
-
# Extract weather data
|
414 |
month = hourly_data["month"]
|
415 |
day = hourly_data["day"]
|
416 |
hour = hourly_data["hour"]
|
417 |
ghi = hourly_data["global_horizontal_radiation"]
|
418 |
-
dni = hourly_data.get("direct_normal_radiation", ghi * 0.7)
|
419 |
-
dhi = hourly_data.get("diffuse_horizontal_radiation", ghi * 0.3)
|
420 |
outdoor_temp = hourly_data["dry_bulb"]
|
421 |
|
422 |
if ghi < 0 or dni < 0 or dhi < 0:
|
423 |
logger.error(f"Negative radiation values for {month}/{day}/{hour} for {component_name} ({component.component_type.value})")
|
424 |
raise ValueError(f"Negative radiation values for {month}/{day}/{hour}")
|
425 |
|
426 |
-
# Add detailed logging for solar calculation
|
427 |
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
428 |
f"dry_bulb={outdoor_temp} for {component_name} ({component.component_type.value})")
|
429 |
|
430 |
-
|
431 |
-
year = 2025 # Fixed year since not provided
|
432 |
n = TFMCalculations.day_of_year(month, day, year)
|
433 |
EOT = TFMCalculations.equation_of_time(n)
|
434 |
-
lambda_std = 15 * timezone
|
435 |
-
standard_time = hour - 1 + 0.5
|
436 |
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
437 |
|
438 |
-
# Step 2: Solar Declination (未)
|
439 |
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
440 |
-
|
441 |
-
# Step 3: Hour Angle (HRA)
|
442 |
-
hra = 15 * (LST - 12)
|
443 |
-
|
444 |
-
# Step 4: Solar Altitude (伪) and Azimuth (蠄)
|
445 |
phi = math.radians(latitude)
|
446 |
delta_rad = math.radians(delta)
|
|
|
447 |
hra_rad = math.radians(hra)
|
448 |
|
449 |
sin_alpha = math.sin(phi) * math.sin(delta_rad) + math.cos(phi) * math.cos(delta_rad) * math.cos(hra_rad)
|
450 |
alpha = math.degrees(math.asin(sin_alpha))
|
451 |
|
452 |
if abs(math.cos(math.radians(alpha))) < 0.01:
|
453 |
-
azimuth = 0
|
454 |
else:
|
455 |
sin_az = math.cos(delta_rad) * math.sin(hra_rad) / math.cos(math.radians(alpha))
|
456 |
cos_az = (sin_alpha * math.sin(phi) - math.sin(delta_rad)) / (math.cos(math.radians(alpha)) * math.cos(phi))
|
457 |
azimuth = math.degrees(math.atan2(sin_az, cos_az))
|
458 |
-
if hra > 0:
|
459 |
azimuth = 360 - azimuth if azimuth > 0 else -azimuth
|
460 |
|
461 |
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
462 |
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name} ({component.component_type.value})")
|
463 |
|
464 |
-
# Step 5: Get surface parameters with robust error handling
|
465 |
building_info = {"orientation_angle": building_orientation}
|
466 |
try:
|
467 |
-
surface_tilt, surface_azimuth, h_o, emissivity,
|
468 |
TFMCalculations.get_surface_parameters(
|
469 |
component, building_info, material_library, project_materials,
|
470 |
-
project_constructions, project_glazing_materials
|
471 |
)
|
472 |
except Exception as e:
|
473 |
logger.error(f"Error getting surface parameters for {component_name}: {str(e)}. Using defaults.")
|
474 |
-
# Apply defaults based on component type
|
475 |
if component.component_type == ComponentType.ROOF:
|
476 |
-
surface_tilt = 0.0
|
477 |
-
surface_azimuth = 0.0
|
478 |
elif component.component_type == ComponentType.SKYLIGHT:
|
479 |
-
surface_tilt = 0.0
|
480 |
-
surface_azimuth = 0.0
|
481 |
elif component.component_type == ComponentType.FLOOR:
|
482 |
-
surface_tilt = 180.0
|
483 |
-
surface_azimuth = 0.0
|
484 |
-
else: # WALL,
|
485 |
-
surface_tilt = 90.0
|
486 |
-
surface_azimuth = 0.0
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
solar_absorption = 0.6
|
491 |
h_o = 17.0 if component.component_type == ComponentType.WALL else 23.0
|
492 |
else: # WINDOW, SKYLIGHT
|
493 |
-
|
494 |
h_o = 17.0 if component.component_type == ComponentType.WINDOW else 23.0
|
495 |
|
496 |
-
# Step 6: Calculate angle of incidence (胃)
|
497 |
-
# Convert angles to radians for calculation
|
498 |
alpha_rad = math.radians(alpha)
|
499 |
surface_tilt_rad = math.radians(surface_tilt)
|
500 |
azimuth_rad = math.radians(azimuth)
|
501 |
surface_azimuth_rad = math.radians(surface_azimuth)
|
502 |
|
503 |
-
# Calculate cos(胃) using the solar position and surface orientation
|
504 |
cos_theta = (math.sin(alpha_rad) * math.cos(surface_tilt_rad) +
|
505 |
math.cos(alpha_rad) * math.sin(surface_tilt_rad) *
|
506 |
math.cos(azimuth_rad - surface_azimuth_rad))
|
507 |
|
508 |
-
# Clamp to [0, 1] to avoid numerical issues
|
509 |
cos_theta = max(min(cos_theta, 1.0), 0.0)
|
510 |
|
511 |
-
# Log the calculated values
|
512 |
logger.info(f" Component {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
513 |
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
514 |
f"cos_theta={cos_theta:.4f}")
|
515 |
|
516 |
-
# Step 7: Calculate total incident radiation (I_t)
|
517 |
-
# Calculate view factor for ground-reflected radiation
|
518 |
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
519 |
-
|
520 |
-
# Calculate ground-reflected radiation
|
521 |
ground_reflected = ground_reflectivity * ghi * view_factor
|
522 |
|
523 |
-
|
524 |
-
if cos_theta > 0: # Surface receives direct beam radiation
|
525 |
I_t = dni * cos_theta + dhi + ground_reflected
|
526 |
-
else:
|
527 |
I_t = dhi + ground_reflected
|
528 |
|
529 |
-
# Step 8: Calculate solar heat gain based on component type
|
530 |
solar_heat_gain = 0.0
|
531 |
|
532 |
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
533 |
-
|
534 |
-
shgc = 0.7 # Default
|
535 |
glazing_material = getattr(component, 'glazing_material', None)
|
536 |
if glazing_material:
|
537 |
glazing_material_obj = None
|
@@ -544,36 +474,28 @@ class TFMCalculations:
|
|
544 |
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
545 |
else:
|
546 |
logger.warning(f"Glazing material not found for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
547 |
-
else:
|
548 |
-
logger.warning(f"No glazing material defined for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
549 |
|
550 |
-
|
551 |
-
glazing_type = "Single Clear" # Default
|
552 |
if hasattr(component, 'name') and component.name in TFMCalculations.GLAZING_TYPE_MAPPING:
|
553 |
glazing_type = TFMCalculations.GLAZING_TYPE_MAPPING[component.name]
|
554 |
|
555 |
-
|
556 |
-
iac = getattr(component, 'iac', 1.0) # Default internal shading
|
557 |
|
558 |
-
# Calculate dynamic SHGC based on incidence angle
|
559 |
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
560 |
|
561 |
-
|
562 |
-
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000 # kW
|
563 |
|
564 |
logger.info(f"Fenestration solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
565 |
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
566 |
f"I_t={I_t:.2f}, iac={iac})")
|
567 |
|
568 |
-
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF
|
569 |
-
|
570 |
-
surface_resistance = 1/h_o # m虏路K/W
|
571 |
|
572 |
-
|
573 |
-
solar_heat_gain = component.area * solar_absorption * I_t * surface_resistance / 1000 # kW
|
574 |
|
575 |
logger.info(f"Opaque surface solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
576 |
-
f"{solar_heat_gain:.4f} kW (area={component.area},
|
577 |
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
578 |
|
579 |
return solar_heat_gain
|
@@ -598,11 +520,10 @@ class TFMCalculations:
|
|
598 |
fraction = min(lighting_operating_hours, operation_hours) / operation_hours if operation_hours > 0 else 0
|
599 |
lighting_load = lpd * area * fraction
|
600 |
total_load += lighting_load
|
601 |
-
equipment = internal_loads.get("equipment")
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
total_load += equipment_load
|
606 |
return total_load / 1000
|
607 |
|
608 |
@staticmethod
|
@@ -610,21 +531,21 @@ class TFMCalculations:
|
|
610 |
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
611 |
if mode == "none":
|
612 |
return 0, 0
|
613 |
-
ventilation = internal_loads.get("ventilation")
|
614 |
if not ventilation:
|
615 |
return 0, 0
|
616 |
-
space_rate = ventilation.get("space_rate", 0.3)
|
617 |
-
people_rate = ventilation.get("people_rate", 2.5)
|
618 |
num_people = sum(group["num_people"] for group in internal_loads.get("people", []))
|
619 |
-
ventilation_flow = (space_rate * area + people_rate * num_people) / 1000
|
620 |
-
air_density = 1.2
|
621 |
-
specific_heat = 1000
|
622 |
delta_t = outdoor_temp - indoor_temp
|
623 |
if mode == "cooling" and delta_t <= 0:
|
624 |
return 0, 0
|
625 |
if mode == "heating" and delta_t >= 0:
|
626 |
return 0, 0
|
627 |
-
load = ventilation_flow * air_density * specific_heat * delta_t / 1000
|
628 |
cooling_load = load if mode == "cooling" else 0
|
629 |
heating_load = -load if mode == "heating" else 0
|
630 |
return cooling_load, heating_load
|
@@ -634,15 +555,15 @@ class TFMCalculations:
|
|
634 |
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
635 |
if mode == "none":
|
636 |
return 0, 0
|
637 |
-
infiltration = internal_loads.get("infiltration")
|
638 |
if not infiltration:
|
639 |
return 0, 0
|
640 |
method = infiltration.get("method", "ACH")
|
641 |
settings = infiltration.get("settings", {})
|
642 |
building_height = building_info.get("building_height", 3.0)
|
643 |
-
volume = area * building_height
|
644 |
-
air_density = 1.2
|
645 |
-
specific_heat = 1000
|
646 |
delta_t = outdoor_temp - indoor_temp
|
647 |
if mode == "cooling" and delta_t <= 0:
|
648 |
return 0, 0
|
@@ -650,17 +571,17 @@ class TFMCalculations:
|
|
650 |
return 0, 0
|
651 |
if method == "ACH":
|
652 |
ach = settings.get("rate", 0.5)
|
653 |
-
infiltration_flow = ach * volume / 3600
|
654 |
elif method == "Crack Flow":
|
655 |
-
ela = settings.get("ela", 0.0001)
|
656 |
-
wind_speed = 4.0
|
657 |
-
infiltration_flow = ela * area * wind_speed / 2
|
658 |
else: # Empirical Equations
|
659 |
c = settings.get("c", 0.1)
|
660 |
n = settings.get("n", 0.65)
|
661 |
delta_t_abs = abs(delta_t)
|
662 |
-
infiltration_flow = c * (delta_t_abs ** n) * area / 3600
|
663 |
-
load = infiltration_flow * air_density * specific_heat * delta_t / 1000
|
664 |
cooling_load = load if mode == "cooling" else 0
|
665 |
heating_load = -load if mode == "heating" else 0
|
666 |
return cooling_load, heating_load
|
@@ -670,7 +591,7 @@ class TFMCalculations:
|
|
670 |
"""Calculate adaptive comfort temperature per ASHRAE 55."""
|
671 |
if 10 <= outdoor_temp <= 33.5:
|
672 |
return 0.31 * outdoor_temp + 17.8
|
673 |
-
return 24.0
|
674 |
|
675 |
@staticmethod
|
676 |
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
@@ -708,7 +629,7 @@ class TFMCalculations:
|
|
708 |
}
|
709 |
elif mode == "heating":
|
710 |
return {
|
711 |
-
"temperature": indoor_conditions.get("heating_setpoint", {}).get("temperature",
|
712 |
"rh": indoor_conditions.get("heating_setpoint", {}).get("rh", 50.0)
|
713 |
}
|
714 |
else:
|
@@ -733,13 +654,11 @@ class TFMCalculations:
|
|
733 |
operating_periods = hvac_settings.get("operating_hours", [{"start": 8, "end": 18}])
|
734 |
area = building_info.get("floor_area", 100.0)
|
735 |
|
736 |
-
# Ensure MaterialLibrary is properly initialized
|
737 |
if "material_library" not in st.session_state:
|
738 |
-
from
|
739 |
st.session_state.material_library = MaterialLibrary()
|
740 |
logger.info("Initialized MaterialLibrary in session_state for solar calculations")
|
741 |
|
742 |
-
# Pre-calculate CTF coefficients for all components using CTFCalculator
|
743 |
for comp_list in components.values():
|
744 |
for comp in comp_list:
|
745 |
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
@@ -749,9 +668,7 @@ class TFMCalculations:
|
|
749 |
outdoor_temp = hour_data["dry_bulb"]
|
750 |
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp)
|
751 |
indoor_temp = indoor_cond["temperature"]
|
752 |
-
# Initialize all loads to 0
|
753 |
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
754 |
-
# Check if hour is within operating periods
|
755 |
is_operating = False
|
756 |
for period in operating_periods:
|
757 |
start_hour = period.get("start", 8)
|
@@ -759,20 +676,14 @@ class TFMCalculations:
|
|
759 |
if start_hour <= hour % 24 <= end_hour:
|
760 |
is_operating = True
|
761 |
break
|
762 |
-
# Determine mode based on temperature threshold (18掳C)
|
763 |
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
764 |
if is_operating and mode == "cooling":
|
765 |
-
# Calculate solar load for each component and accumulate
|
766 |
for comp_list in components.values():
|
767 |
for comp in comp_list:
|
768 |
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
769 |
conduction_cooling += cool_load
|
770 |
-
|
771 |
-
# Calculate solar load for each component and accumulate
|
772 |
component_solar_load = TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
773 |
solar += component_solar_load
|
774 |
-
|
775 |
-
# Add detailed logging for solar load accumulation
|
776 |
logger.info(f"Component {comp.name} ({comp.component_type.value}) solar load: {component_solar_load:.3f} kW, accumulated solar: {solar:.3f} kW")
|
777 |
|
778 |
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
@@ -786,16 +697,13 @@ class TFMCalculations:
|
|
786 |
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
787 |
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
788 |
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
789 |
-
else:
|
790 |
-
internal = 0
|
791 |
|
792 |
-
# Add detailed logging for total loads
|
793 |
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
794 |
|
795 |
-
# Calculate total loads, subtracting internal load for heating
|
796 |
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
797 |
total_heating = max(conduction_heating + ventilation_heating + infiltration_heating - internal, 0)
|
798 |
-
# Enforce mutual exclusivity within hour
|
799 |
if mode == "cooling":
|
800 |
total_heating = 0
|
801 |
elif mode == "heating":
|
@@ -815,24 +723,21 @@ class TFMCalculations:
|
|
815 |
"total_cooling": total_cooling,
|
816 |
"total_heating": total_heating
|
817 |
})
|
818 |
-
# Group loads by day and apply daily control
|
819 |
loads_by_day = defaultdict(list)
|
820 |
for load in temp_loads:
|
821 |
day_key = (load["month"], load["day"])
|
822 |
loads_by_day[day_key].append(load)
|
823 |
final_loads = []
|
824 |
for day_key, day_loads in loads_by_day.items():
|
825 |
-
# Count hours with non-zero cooling and heating loads
|
826 |
cooling_hours = sum(1 for load in day_loads if load["total_cooling"] > 0)
|
827 |
heating_hours = sum(1 for load in day_loads if load["total_heating"] > 0)
|
828 |
-
# Apply daily control
|
829 |
for load in day_loads:
|
830 |
if cooling_hours > heating_hours:
|
831 |
-
load["total_heating"] = 0
|
832 |
elif heating_hours > cooling_hours:
|
833 |
-
load["total_cooling"] = 0 # Keep heating components, zero cooling total
|
834 |
-
else: # Equal hours
|
835 |
load["total_cooling"] = 0
|
836 |
-
|
|
|
|
|
837 |
final_loads.append(load)
|
838 |
return final_loads
|
|
|
10 |
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
11 |
from enum import Enum
|
12 |
import streamlit as st
|
13 |
+
from app.material_library import Construction, GlazingMaterial, Material, MaterialLibrary
|
14 |
from app.internal_loads import PEOPLE_ACTIVITY_LEVELS, DIVERSITY_FACTORS, LIGHTING_FIXTURE_TYPES, EQUIPMENT_HEAT_GAINS, VENTILATION_RATES, INFILTRATION_SETTINGS
|
15 |
from datetime import datetime
|
16 |
from collections import defaultdict
|
|
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
class TFMCalculations:
|
26 |
+
# Solar calculation constants (from utils/solar.py)
|
27 |
SHGC_COEFFICIENTS = {
|
28 |
"Single Clear": [0.1, -0.0, 0.0, -0.0, 0.0, 0.87],
|
29 |
"Single Tinted": [0.12, -0.0, 0.0, -0.0, 0.8, -0.0],
|
|
|
140 |
@staticmethod
|
141 |
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
142 |
project_materials: Dict, project_constructions: Dict,
|
143 |
+
project_glazing_materials: Dict) -> Tuple[float, float, float, Optional[float], float]:
|
144 |
"""
|
145 |
+
Determine surface parameters (tilt, azimuth, h_o, emissivity, absorptivity) for a component.
|
146 |
+
Uses MaterialLibrary to fetch properties from first layer for walls/roofs, and GlazingMaterial for windows/skylights.
|
147 |
+
Handles orientation and tilt based on component type:
|
148 |
+
- Walls, Windows: Azimuth = elevation base azimuth + component.rotation; Tilt = 90掳.
|
149 |
+
- Roofs, Skylights: Azimuth = component.orientation; Tilt = component.tilt (default 0掳).
|
150 |
+
- Floors: Tilt = 180掳; Azimuth = 0掳.
|
151 |
|
152 |
Args:
|
153 |
component: Component object with component_type, elevation, rotation, orientation, tilt,
|
154 |
+
construction, or glazing_material.
|
155 |
building_info (Dict): Building information containing orientation_angle for elevation mapping.
|
156 |
material_library: MaterialLibrary instance for accessing library materials/constructions.
|
157 |
project_materials: Dict of project-specific Material objects.
|
158 |
project_constructions: Dict of project-specific Construction objects.
|
159 |
project_glazing_materials: Dict of project-specific GlazingMaterial objects.
|
|
|
160 |
|
161 |
Returns:
|
162 |
Tuple[float, float, float, Optional[float], float]: Surface tilt (掳), surface azimuth (掳),
|
163 |
+
h_o (W/m虏路K), emissivity, absorptivity.
|
164 |
"""
|
165 |
# Default parameters
|
166 |
component_name = getattr(component, 'name', 'unnamed_component')
|
167 |
|
168 |
# Initialize default values
|
169 |
+
surface_tilt = 90.0 # Default vertical for walls, windows
|
170 |
surface_azimuth = 0.0 # Default north-facing
|
171 |
h_o = 17.0 # Default exterior convection coefficient
|
172 |
emissivity = 0.9 # Default for opaque components
|
173 |
+
absorptivity = 0.6 # Default
|
174 |
|
175 |
try:
|
176 |
# Set component-specific defaults based on type
|
177 |
if component.component_type == ComponentType.ROOF:
|
178 |
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
179 |
h_o = 23.0 # W/m虏路K for roofs
|
|
|
180 |
surface_azimuth = getattr(component, 'orientation', 0.0)
|
181 |
logger.debug(f"Roof component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
182 |
|
183 |
elif component.component_type == ComponentType.SKYLIGHT:
|
184 |
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
185 |
h_o = 23.0 # W/m虏路K for skylights
|
|
|
186 |
surface_azimuth = getattr(component, 'orientation', 0.0)
|
187 |
logger.debug(f"Skylight component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
188 |
|
|
|
192 |
surface_azimuth = 0.0 # Default azimuth for floors
|
193 |
logger.debug(f"Floor component {component_name}: using default azimuth={surface_azimuth}, tilt={surface_tilt}")
|
194 |
|
195 |
+
else: # WALL, WINDOW
|
196 |
surface_tilt = 90.0 # Vertical
|
197 |
h_o = 17.0 # W/m虏路K
|
|
|
|
|
198 |
elevation = getattr(component, 'elevation', None)
|
199 |
if not elevation:
|
200 |
logger.warning(f"Component {component_name} ({component.component_type.value}) is missing 'elevation' field. Using default azimuth=0.")
|
201 |
+
surface_azimuth = 0.0
|
202 |
else:
|
|
|
203 |
base_azimuth = building_info.get("orientation_angle", 0.0)
|
204 |
elevation_angles = {
|
205 |
"A": base_azimuth,
|
|
|
211 |
if elevation not in elevation_angles:
|
212 |
logger.warning(f"Invalid elevation '{elevation}' for component {component_name} ({component.component_type.value}). "
|
213 |
f"Expected one of {list(elevation_angles.keys())}. Using default azimuth=0.")
|
214 |
+
surface_azimuth = 0.0
|
215 |
else:
|
|
|
216 |
surface_azimuth = (elevation_angles[elevation] + getattr(component, 'rotation', 0.0)) % 360
|
217 |
logger.debug(f"Component {component_name} ({component.component_type.value}): elevation={elevation}, "
|
218 |
f"base_azimuth={elevation_angles[elevation]}, rotation={getattr(component, 'rotation', 0.0)}, "
|
|
|
223 |
construction = getattr(component, 'construction', None)
|
224 |
if not construction:
|
225 |
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). "
|
226 |
+
f"Using defaults: absorptivity=0.6, emissivity=0.9.")
|
227 |
else:
|
|
|
228 |
construction_obj = None
|
229 |
if hasattr(construction, 'name'):
|
230 |
construction_obj = (project_constructions.get(construction.name) or
|
|
|
232 |
|
233 |
if not construction_obj:
|
234 |
logger.warning(f"Construction not found for {component_name} ({component.component_type.value}). "
|
235 |
+
f"Using defaults: absorptivity=0.6, emissivity=0.9.")
|
236 |
elif not construction_obj.layers:
|
237 |
logger.warning(f"No layers in construction for {component_name} ({component.component_type.value}). "
|
238 |
+
f"Using defaults: absorptivity=0.6, emissivity=0.9.")
|
239 |
else:
|
|
|
240 |
first_layer = construction_obj.layers[0]
|
241 |
material = first_layer.get("material")
|
242 |
if material:
|
243 |
+
absorptivity = getattr(material, 'absorptivity', 0.6)
|
244 |
emissivity = getattr(material, 'emissivity', 0.9)
|
245 |
logger.debug(f"Using first layer material for {component_name} ({component.component_type.value}): "
|
246 |
+
f"absorptivity={absorptivity}, emissivity={emissivity}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
249 |
glazing_material = getattr(component, 'glazing_material', None)
|
|
|
252 |
f"Using default SHGC=0.7, h_o={h_o}.")
|
253 |
shgc = 0.7
|
254 |
else:
|
|
|
255 |
glazing_material_obj = None
|
256 |
if hasattr(glazing_material, 'name'):
|
257 |
glazing_material_obj = (project_glazing_materials.get(glazing_material.name) or
|
|
|
266 |
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
267 |
logger.debug(f"Using glazing material for {component_name} ({component.component_type.value}): "
|
268 |
f"shgc={shgc}, h_o={h_o}")
|
269 |
+
emissivity = None
|
270 |
|
271 |
except Exception as e:
|
272 |
logger.error(f"Error retrieving surface parameters for {component_name} ({component.component_type.value}): {str(e)}")
|
|
|
273 |
if component.component_type == ComponentType.ROOF:
|
274 |
+
surface_tilt = 0.0
|
275 |
+
h_o = 23.0
|
276 |
+
surface_azimuth = 0.0
|
277 |
elif component.component_type == ComponentType.SKYLIGHT:
|
278 |
+
surface_tilt = 0.0
|
279 |
+
h_o = 23.0
|
280 |
+
surface_azimuth = 0.0
|
281 |
elif component.component_type == ComponentType.FLOOR:
|
282 |
+
surface_tilt = 180.0
|
283 |
+
h_o = 17.0
|
284 |
+
surface_azimuth = 0.0
|
285 |
+
else: # WALL, WINDOW
|
286 |
+
surface_tilt = 90.0
|
287 |
+
h_o = 17.0
|
288 |
+
surface_azimuth = 0.0
|
289 |
|
290 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF]:
|
291 |
+
absorptivity = 0.6
|
|
|
292 |
emissivity = 0.9
|
293 |
else: # WINDOW, SKYLIGHT
|
294 |
shgc = 0.7
|
295 |
emissivity = None
|
296 |
|
|
|
297 |
logger.info(f"Final surface parameters for {component_name} ({component.component_type.value}): "
|
298 |
f"tilt={surface_tilt:.1f}, azimuth={surface_azimuth:.1f}, h_o={h_o:.1f}")
|
299 |
+
return surface_tilt, surface_azimuth, h_o, emissivity, absorptivity
|
|
|
300 |
|
301 |
@staticmethod
|
302 |
def calculate_solar_load(component, hourly_data: Dict, hour: int, building_orientation: float, mode: str = "none") -> float:
|
|
|
315 |
References:
|
316 |
ASHRAE Handbook鈥擣undamentals, Chapters 15 and 18.
|
317 |
"""
|
|
|
318 |
if mode != "cooling":
|
319 |
return 0
|
320 |
|
|
|
321 |
if component.component_type == ComponentType.FLOOR:
|
322 |
return 0
|
323 |
|
324 |
component_name = getattr(component, 'name', 'unnamed_component')
|
325 |
|
326 |
try:
|
|
|
327 |
material_library = st.session_state.get("material_library")
|
328 |
if not material_library:
|
329 |
+
from app.material_library import MaterialLibrary
|
|
|
|
|
330 |
material_library = MaterialLibrary()
|
331 |
st.session_state.material_library = material_library
|
332 |
logger.info(f"Created new MaterialLibrary for {component_name} ({component.component_type.value})")
|
333 |
|
334 |
+
project_materials = st.session_state.get("project_data", {}).get("materials", {}).get("project", {})
|
335 |
+
project_constructions = st.session_state.get("project_data", {}).get("constructions", {}).get("project", {})
|
336 |
+
project_glazing_materials = st.session_state.get("project_data", {}).get("fenestrations", {}).get("project", {})
|
337 |
+
climate_data = st.session_state.get("project_data", {}).get("climate_data", {})
|
|
|
|
|
|
|
338 |
latitude = climate_data.get("latitude", 0.0)
|
339 |
longitude = climate_data.get("longitude", 0.0)
|
340 |
timezone = climate_data.get("time_zone", 0.0)
|
341 |
+
ground_reflectivity = st.session_state.get("project_data", {}).get("climate_data", {}).get("ground_reflectivity", 0.2)
|
342 |
|
|
|
|
|
|
|
|
|
343 |
if not -90 <= latitude <= 90:
|
344 |
logger.warning(f"Invalid latitude {latitude} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
345 |
latitude = 0.0
|
|
|
353 |
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name} ({component.component_type.value}). Using default 0.2.")
|
354 |
ground_reflectivity = 0.2
|
355 |
|
|
|
356 |
required_fields = ["month", "day", "hour", "global_horizontal_radiation", "direct_normal_radiation",
|
357 |
"diffuse_horizontal_radiation", "dry_bulb"]
|
358 |
if not all(field in hourly_data for field in required_fields):
|
359 |
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name} ({component.component_type.value}): {hourly_data}")
|
360 |
return 0
|
361 |
|
|
|
362 |
if hourly_data["global_horizontal_radiation"] <= 0:
|
363 |
logger.info(f"No solar load for hour {hour} due to GHI={hourly_data['global_horizontal_radiation']} for {component_name} ({component.component_type.value})")
|
364 |
return 0
|
365 |
|
|
|
366 |
month = hourly_data["month"]
|
367 |
day = hourly_data["day"]
|
368 |
hour = hourly_data["hour"]
|
369 |
ghi = hourly_data["global_horizontal_radiation"]
|
370 |
+
dni = hourly_data.get("direct_normal_radiation", ghi * 0.7)
|
371 |
+
dhi = hourly_data.get("diffuse_horizontal_radiation", ghi * 0.3)
|
372 |
outdoor_temp = hourly_data["dry_bulb"]
|
373 |
|
374 |
if ghi < 0 or dni < 0 or dhi < 0:
|
375 |
logger.error(f"Negative radiation values for {month}/{day}/{hour} for {component_name} ({component.component_type.value})")
|
376 |
raise ValueError(f"Negative radiation values for {month}/{day}/{hour}")
|
377 |
|
|
|
378 |
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
379 |
f"dry_bulb={outdoor_temp} for {component_name} ({component.component_type.value})")
|
380 |
|
381 |
+
year = 2025
|
|
|
382 |
n = TFMCalculations.day_of_year(month, day, year)
|
383 |
EOT = TFMCalculations.equation_of_time(n)
|
384 |
+
lambda_std = 15 * timezone
|
385 |
+
standard_time = hour - 1 + 0.5
|
386 |
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
387 |
|
|
|
388 |
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
|
|
|
|
|
|
|
|
|
|
389 |
phi = math.radians(latitude)
|
390 |
delta_rad = math.radians(delta)
|
391 |
+
hra = 15 * (LST - 12)
|
392 |
hra_rad = math.radians(hra)
|
393 |
|
394 |
sin_alpha = math.sin(phi) * math.sin(delta_rad) + math.cos(phi) * math.cos(delta_rad) * math.cos(hra_rad)
|
395 |
alpha = math.degrees(math.asin(sin_alpha))
|
396 |
|
397 |
if abs(math.cos(math.radians(alpha))) < 0.01:
|
398 |
+
azimuth = 0
|
399 |
else:
|
400 |
sin_az = math.cos(delta_rad) * math.sin(hra_rad) / math.cos(math.radians(alpha))
|
401 |
cos_az = (sin_alpha * math.sin(phi) - math.sin(delta_rad)) / (math.cos(math.radians(alpha)) * math.cos(phi))
|
402 |
azimuth = math.degrees(math.atan2(sin_az, cos_az))
|
403 |
+
if hra > 0:
|
404 |
azimuth = 360 - azimuth if azimuth > 0 else -azimuth
|
405 |
|
406 |
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
407 |
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name} ({component.component_type.value})")
|
408 |
|
|
|
409 |
building_info = {"orientation_angle": building_orientation}
|
410 |
try:
|
411 |
+
surface_tilt, surface_azimuth, h_o, emissivity, absorptivity = \
|
412 |
TFMCalculations.get_surface_parameters(
|
413 |
component, building_info, material_library, project_materials,
|
414 |
+
project_constructions, project_glazing_materials
|
415 |
)
|
416 |
except Exception as e:
|
417 |
logger.error(f"Error getting surface parameters for {component_name}: {str(e)}. Using defaults.")
|
|
|
418 |
if component.component_type == ComponentType.ROOF:
|
419 |
+
surface_tilt = 0.0
|
420 |
+
surface_azimuth = 0.0
|
421 |
elif component.component_type == ComponentType.SKYLIGHT:
|
422 |
+
surface_tilt = 0.0
|
423 |
+
surface_azimuth = 0.0
|
424 |
elif component.component_type == ComponentType.FLOOR:
|
425 |
+
surface_tilt = 180.0
|
426 |
+
surface_azimuth = 0.0
|
427 |
+
else: # WALL, WINDOW
|
428 |
+
surface_tilt = 90.0
|
429 |
+
surface_azimuth = 0.0
|
430 |
|
431 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF]:
|
432 |
+
absorptivity = 0.6
|
|
|
433 |
h_o = 17.0 if component.component_type == ComponentType.WALL else 23.0
|
434 |
else: # WINDOW, SKYLIGHT
|
435 |
+
absorptivity = 0.0
|
436 |
h_o = 17.0 if component.component_type == ComponentType.WINDOW else 23.0
|
437 |
|
|
|
|
|
438 |
alpha_rad = math.radians(alpha)
|
439 |
surface_tilt_rad = math.radians(surface_tilt)
|
440 |
azimuth_rad = math.radians(azimuth)
|
441 |
surface_azimuth_rad = math.radians(surface_azimuth)
|
442 |
|
|
|
443 |
cos_theta = (math.sin(alpha_rad) * math.cos(surface_tilt_rad) +
|
444 |
math.cos(alpha_rad) * math.sin(surface_tilt_rad) *
|
445 |
math.cos(azimuth_rad - surface_azimuth_rad))
|
446 |
|
|
|
447 |
cos_theta = max(min(cos_theta, 1.0), 0.0)
|
448 |
|
|
|
449 |
logger.info(f" Component {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
450 |
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
451 |
f"cos_theta={cos_theta:.4f}")
|
452 |
|
|
|
|
|
453 |
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
|
|
|
|
454 |
ground_reflected = ground_reflectivity * ghi * view_factor
|
455 |
|
456 |
+
if cos_theta > 0:
|
|
|
457 |
I_t = dni * cos_theta + dhi + ground_reflected
|
458 |
+
else:
|
459 |
I_t = dhi + ground_reflected
|
460 |
|
|
|
461 |
solar_heat_gain = 0.0
|
462 |
|
463 |
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
464 |
+
shgc = 0.7
|
|
|
465 |
glazing_material = getattr(component, 'glazing_material', None)
|
466 |
if glazing_material:
|
467 |
glazing_material_obj = None
|
|
|
474 |
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
475 |
else:
|
476 |
logger.warning(f"Glazing material not found for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
|
|
|
|
477 |
|
478 |
+
glazing_type = "Single Clear"
|
|
|
479 |
if hasattr(component, 'name') and component.name in TFMCalculations.GLAZING_TYPE_MAPPING:
|
480 |
glazing_type = TFMCalculations.GLAZING_TYPE_MAPPING[component.name]
|
481 |
|
482 |
+
iac = getattr(component, 'iac', 1.0)
|
|
|
483 |
|
|
|
484 |
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
485 |
|
486 |
+
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000
|
|
|
487 |
|
488 |
logger.info(f"Fenestration solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
489 |
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
490 |
f"I_t={I_t:.2f}, iac={iac})")
|
491 |
|
492 |
+
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF]:
|
493 |
+
surface_resistance = 1/h_o
|
|
|
494 |
|
495 |
+
solar_heat_gain = component.area * absorptivity * I_t * surface_resistance / 1000
|
|
|
496 |
|
497 |
logger.info(f"Opaque surface solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
498 |
+
f"{solar_heat_gain:.4f} kW (area={component.area}, absorptivity={absorptivity:.2f}, "
|
499 |
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
500 |
|
501 |
return solar_heat_gain
|
|
|
520 |
fraction = min(lighting_operating_hours, operation_hours) / operation_hours if operation_hours > 0 else 0
|
521 |
lighting_load = lpd * area * fraction
|
522 |
total_load += lighting_load
|
523 |
+
equipment = internal_loads.get("equipment", {})
|
524 |
+
total_power_density = equipment.get("total_power_density", 0)
|
525 |
+
equipment_load = total_power_density * area
|
526 |
+
total_load += equipment_load
|
|
|
527 |
return total_load / 1000
|
528 |
|
529 |
@staticmethod
|
|
|
531 |
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
532 |
if mode == "none":
|
533 |
return 0, 0
|
534 |
+
ventilation = internal_loads.get("ventilation", {})
|
535 |
if not ventilation:
|
536 |
return 0, 0
|
537 |
+
space_rate = ventilation.get("space_rate", 0.3)
|
538 |
+
people_rate = ventilation.get("people_rate", 2.5)
|
539 |
num_people = sum(group["num_people"] for group in internal_loads.get("people", []))
|
540 |
+
ventilation_flow = (space_rate * area + people_rate * num_people) / 1000
|
541 |
+
air_density = 1.2
|
542 |
+
specific_heat = 1000
|
543 |
delta_t = outdoor_temp - indoor_temp
|
544 |
if mode == "cooling" and delta_t <= 0:
|
545 |
return 0, 0
|
546 |
if mode == "heating" and delta_t >= 0:
|
547 |
return 0, 0
|
548 |
+
load = ventilation_flow * air_density * specific_heat * delta_t / 1000
|
549 |
cooling_load = load if mode == "cooling" else 0
|
550 |
heating_load = -load if mode == "heating" else 0
|
551 |
return cooling_load, heating_load
|
|
|
555 |
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
556 |
if mode == "none":
|
557 |
return 0, 0
|
558 |
+
infiltration = internal_loads.get("infiltration", {})
|
559 |
if not infiltration:
|
560 |
return 0, 0
|
561 |
method = infiltration.get("method", "ACH")
|
562 |
settings = infiltration.get("settings", {})
|
563 |
building_height = building_info.get("building_height", 3.0)
|
564 |
+
volume = area * building_height
|
565 |
+
air_density = 1.2
|
566 |
+
specific_heat = 1000
|
567 |
delta_t = outdoor_temp - indoor_temp
|
568 |
if mode == "cooling" and delta_t <= 0:
|
569 |
return 0, 0
|
|
|
571 |
return 0, 0
|
572 |
if method == "ACH":
|
573 |
ach = settings.get("rate", 0.5)
|
574 |
+
infiltration_flow = ach * volume / 3600
|
575 |
elif method == "Crack Flow":
|
576 |
+
ela = settings.get("ela", 0.0001)
|
577 |
+
wind_speed = 4.0
|
578 |
+
infiltration_flow = ela * area * wind_speed / 2
|
579 |
else: # Empirical Equations
|
580 |
c = settings.get("c", 0.1)
|
581 |
n = settings.get("n", 0.65)
|
582 |
delta_t_abs = abs(delta_t)
|
583 |
+
infiltration_flow = c * (delta_t_abs ** n) * area / 3600
|
584 |
+
load = infiltration_flow * air_density * specific_heat * delta_t / 1000
|
585 |
cooling_load = load if mode == "cooling" else 0
|
586 |
heating_load = -load if mode == "heating" else 0
|
587 |
return cooling_load, heating_load
|
|
|
591 |
"""Calculate adaptive comfort temperature per ASHRAE 55."""
|
592 |
if 10 <= outdoor_temp <= 33.5:
|
593 |
return 0.31 * outdoor_temp + 17.8
|
594 |
+
return 24.0
|
595 |
|
596 |
@staticmethod
|
597 |
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
|
|
629 |
}
|
630 |
elif mode == "heating":
|
631 |
return {
|
632 |
+
"temperature": indoor_conditions.get("heating_setpoint", {}).get("temperature", 20.0),
|
633 |
"rh": indoor_conditions.get("heating_setpoint", {}).get("rh", 50.0)
|
634 |
}
|
635 |
else:
|
|
|
654 |
operating_periods = hvac_settings.get("operating_hours", [{"start": 8, "end": 18}])
|
655 |
area = building_info.get("floor_area", 100.0)
|
656 |
|
|
|
657 |
if "material_library" not in st.session_state:
|
658 |
+
from app.material_library import MaterialLibrary
|
659 |
st.session_state.material_library = MaterialLibrary()
|
660 |
logger.info("Initialized MaterialLibrary in session_state for solar calculations")
|
661 |
|
|
|
662 |
for comp_list in components.values():
|
663 |
for comp in comp_list:
|
664 |
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
|
|
668 |
outdoor_temp = hour_data["dry_bulb"]
|
669 |
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp)
|
670 |
indoor_temp = indoor_cond["temperature"]
|
|
|
671 |
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
|
|
672 |
is_operating = False
|
673 |
for period in operating_periods:
|
674 |
start_hour = period.get("start", 8)
|
|
|
676 |
if start_hour <= hour % 24 <= end_hour:
|
677 |
is_operating = True
|
678 |
break
|
|
|
679 |
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
680 |
if is_operating and mode == "cooling":
|
|
|
681 |
for comp_list in components.values():
|
682 |
for comp in comp_list:
|
683 |
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
684 |
conduction_cooling += cool_load
|
|
|
|
|
685 |
component_solar_load = TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
686 |
solar += component_solar_load
|
|
|
|
|
687 |
logger.info(f"Component {comp.name} ({comp.component_type.value}) solar load: {component_solar_load:.3f} kW, accumulated solar: {solar:.3f} kW")
|
688 |
|
689 |
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
|
|
697 |
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
698 |
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
699 |
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
700 |
+
else:
|
701 |
+
internal = 0
|
702 |
|
|
|
703 |
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
704 |
|
|
|
705 |
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
706 |
total_heating = max(conduction_heating + ventilation_heating + infiltration_heating - internal, 0)
|
|
|
707 |
if mode == "cooling":
|
708 |
total_heating = 0
|
709 |
elif mode == "heating":
|
|
|
723 |
"total_cooling": total_cooling,
|
724 |
"total_heating": total_heating
|
725 |
})
|
|
|
726 |
loads_by_day = defaultdict(list)
|
727 |
for load in temp_loads:
|
728 |
day_key = (load["month"], load["day"])
|
729 |
loads_by_day[day_key].append(load)
|
730 |
final_loads = []
|
731 |
for day_key, day_loads in loads_by_day.items():
|
|
|
732 |
cooling_hours = sum(1 for load in day_loads if load["total_cooling"] > 0)
|
733 |
heating_hours = sum(1 for load in day_loads if load["total_heating"] > 0)
|
|
|
734 |
for load in day_loads:
|
735 |
if cooling_hours > heating_hours:
|
736 |
+
load["total_heating"] = 0
|
737 |
elif heating_hours > cooling_hours:
|
|
|
|
|
738 |
load["total_cooling"] = 0
|
739 |
+
else:
|
740 |
+
load["total_cooling"] = 0
|
741 |
+
load["total_heating"] = 0
|
742 |
final_loads.append(load)
|
743 |
return final_loads
|