Spaces:
Sleeping
Sleeping
Update app/hvac_loads.py
Browse files- app/hvac_loads.py +246 -260
app/hvac_loads.py
CHANGED
@@ -14,12 +14,13 @@ import pandas as pd
|
|
14 |
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
15 |
from enum import Enum
|
16 |
import streamlit as st
|
|
|
|
|
17 |
from datetime import datetime
|
18 |
from collections import defaultdict
|
19 |
import logging
|
20 |
import math
|
21 |
from utils.ctf_calculations import CTFCalculator, ComponentType, CTFCoefficients
|
22 |
-
from app.material_library import Construction, GlazingMaterial, DoorMaterial, Material, MaterialLibrary
|
23 |
|
24 |
# Configure logging
|
25 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -53,7 +54,7 @@ class TFMCalculations:
|
|
53 |
}
|
54 |
|
55 |
@staticmethod
|
56 |
-
def calculate_conduction_load(component
|
57 |
"""Calculate conduction load for heating and cooling in kW based on mode."""
|
58 |
if mode == "none":
|
59 |
return 0, 0
|
@@ -64,14 +65,13 @@ class TFMCalculations:
|
|
64 |
return 0, 0
|
65 |
|
66 |
# Get CTF coefficients using CTFCalculator
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# Initialize history terms (simplified: assume steady-state history)
|
71 |
load = component.u_value * component.area * delta_t
|
72 |
-
for i in range(len(
|
73 |
-
load += component.area *
|
74 |
-
load -= component.area *
|
75 |
cooling_load = load / 1000 if mode == "cooling" else 0
|
76 |
heating_load = -load / 1000 if mode == "heating" else 0
|
77 |
return cooling_load, heating_load
|
@@ -103,141 +103,142 @@ class TFMCalculations:
|
|
103 |
c = TFMCalculations.SHGC_COEFFICIENTS[glazing_type]
|
104 |
f_cos_theta = (c[0] + c[1] * cos_theta + c[2] * cos_theta**2 +
|
105 |
c[3] * cos_theta**3 + c[4] * cos_theta**4 + c[5] * cos_theta**5)
|
106 |
-
return
|
107 |
|
108 |
@staticmethod
|
109 |
-
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
110 |
-
project_materials: Dict, project_constructions: Dict,
|
111 |
-
|
112 |
"""
|
113 |
-
Determine surface parameters
|
|
|
114 |
"""
|
115 |
component_name = getattr(component, 'name', 'unnamed_component')
|
116 |
|
117 |
-
#
|
118 |
-
surface_tilt =
|
119 |
-
surface_azimuth =
|
120 |
-
h_o = 17.0 # Default
|
121 |
emissivity = 0.9 # Default for opaque components
|
122 |
-
absorptivity = 0.6 # Default
|
123 |
-
|
124 |
try:
|
125 |
-
#
|
126 |
if component.component_type == ComponentType.ROOF:
|
|
|
127 |
h_o = 23.0
|
|
|
|
|
|
|
128 |
elif component.component_type == ComponentType.SKYLIGHT:
|
|
|
129 |
h_o = 23.0
|
|
|
|
|
|
|
130 |
elif component.component_type == ComponentType.FLOOR:
|
131 |
surface_tilt = 180.0
|
|
|
132 |
surface_azimuth = 0.0
|
|
|
|
|
|
|
|
|
133 |
h_o = 17.0
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
if not construction_name:
|
139 |
-
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). Using defaults.")
|
140 |
else:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
147 |
else:
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
elif component.component_type == ComponentType.DOOR:
|
158 |
-
door_material_name = getattr(component, 'door_material', None)
|
159 |
-
if not door_material_name:
|
160 |
-
logger.warning(f"No door material defined for {component_name}. Using defaults.")
|
161 |
else:
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
logger.warning(f"Door material {door_material_name} not found for {component_name}. Using defaults.")
|
166 |
else:
|
167 |
-
absorptivity = getattr(
|
168 |
-
emissivity = getattr(
|
169 |
-
logger.debug(f"Using
|
170 |
-
f"absorptivity={absorptivity}, emissivity={emissivity}")
|
171 |
|
172 |
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
173 |
-
|
174 |
-
if not
|
175 |
-
logger.warning(f"No fenestration defined for {component_name}. Using default SHGC=0.7.")
|
176 |
shgc = 0.7
|
177 |
else:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
logger.warning(f"Fenestration {fenestration_name} not found for {component_name}. Using default SHGC=0.7.")
|
182 |
shgc = 0.7
|
183 |
else:
|
184 |
-
shgc = getattr(
|
185 |
-
h_o = getattr(
|
186 |
-
logger.debug(f"Using
|
187 |
-
emissivity = None
|
188 |
|
189 |
except Exception as e:
|
190 |
logger.error(f"Error retrieving surface parameters for {component_name}: {str(e)}")
|
191 |
if component.component_type == ComponentType.ROOF:
|
192 |
surface_tilt = 0.0
|
193 |
-
surface_azimuth = 0.0
|
194 |
h_o = 23.0
|
|
|
195 |
elif component.component_type == ComponentType.SKYLIGHT:
|
196 |
surface_tilt = 0.0
|
197 |
-
surface_azimuth = 0.0
|
198 |
h_o = 23.0
|
|
|
199 |
elif component.component_type == ComponentType.FLOOR:
|
200 |
surface_tilt = 180.0
|
201 |
-
surface_azimuth = 0.0
|
202 |
h_o = 17.0
|
|
|
203 |
else:
|
204 |
surface_tilt = 90.0
|
205 |
-
surface_azimuth = 0.0
|
206 |
h_o = 17.0
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
-
logger.info(f"
|
211 |
return surface_tilt, surface_azimuth, h_o, emissivity, absorptivity
|
212 |
|
213 |
@staticmethod
|
214 |
-
def calculate_solar_load(component
|
215 |
"""Calculate solar load in kW (cooling only) using ASHRAE-compliant solar calculations."""
|
216 |
-
if mode != "cooling"
|
|
|
|
|
217 |
return 0
|
218 |
|
219 |
component_name = getattr(component, 'name', 'unnamed_component')
|
220 |
|
221 |
try:
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
project_materials = st.session_state.project_data["materials"]["project"]
|
229 |
-
project_constructions = st.session_state.project_data["constructions"]["project"]
|
230 |
-
project_glazing_materials = st.session_state.project_data["fenestrations"]["project"]
|
231 |
-
project_door_materials = st.session_state.project_data.get("door_materials", {})
|
232 |
-
|
233 |
-
# Get location parameters from climate_data
|
234 |
-
climate_data = st.session_state.project_data["climate_data"]
|
235 |
latitude = climate_data.get("latitude", 0.0)
|
236 |
longitude = climate_data.get("longitude", 0.0)
|
237 |
-
timezone = climate_data.get("
|
238 |
ground_reflectivity = climate_data.get("ground_reflectivity", 0.2)
|
239 |
|
240 |
-
# Validate inputs
|
241 |
if not -90 <= latitude <= 90:
|
242 |
logger.warning(f"Invalid latitude {latitude} for {component_name}. Using default 0.0.")
|
243 |
latitude = 0.0
|
@@ -251,9 +252,8 @@ class TFMCalculations:
|
|
251 |
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name}. Using default 0.2.")
|
252 |
ground_reflectivity = 0.2
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
"diffuse_horizontal_radiation", "dry_bulb"]
|
257 |
if not all(field in hourly_data for field in required_fields):
|
258 |
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name}: {hourly_data}")
|
259 |
return 0
|
@@ -277,21 +277,15 @@ class TFMCalculations:
|
|
277 |
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
278 |
f"dry_bulb={outdoor_temp} for {component_name}")
|
279 |
|
280 |
-
# Step 1: Local Solar Time (LST)
|
281 |
year = 2025
|
282 |
n = TFMCalculations.day_of_year(month, day, year)
|
283 |
EOT = TFMCalculations.equation_of_time(n)
|
284 |
lambda_std = 15 * timezone
|
285 |
standard_time = hour - 1 + 0.5
|
286 |
-
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
287 |
|
288 |
-
# Step 2: Solar Declination (δ)
|
289 |
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
290 |
-
|
291 |
-
# Step 3: Hour Angle (HRA)
|
292 |
hra = 15 * (LST - 12)
|
293 |
-
|
294 |
-
# Step 4: Solar Altitude (α) and Azimuth (ψ)
|
295 |
phi = math.radians(latitude)
|
296 |
delta_rad = math.radians(delta)
|
297 |
hra_rad = math.radians(hra)
|
@@ -311,15 +305,13 @@ class TFMCalculations:
|
|
311 |
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
312 |
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name}")
|
313 |
|
314 |
-
|
315 |
-
building_info = st.session_state.project_data["building_info"]
|
316 |
surface_tilt, surface_azimuth, h_o, emissivity, absorptivity = \
|
317 |
TFMCalculations.get_surface_parameters(
|
318 |
component, building_info, material_library, project_materials,
|
319 |
-
project_constructions,
|
320 |
)
|
321 |
|
322 |
-
# Step 6: Calculate angle of incidence (θ)
|
323 |
alpha_rad = math.radians(alpha)
|
324 |
surface_tilt_rad = math.radians(surface_tilt)
|
325 |
azimuth_rad = math.radians(azimuth)
|
@@ -334,41 +326,44 @@ class TFMCalculations:
|
|
334 |
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
335 |
f"cos_theta={cos_theta:.4f}")
|
336 |
|
337 |
-
# Step 7: Calculate total incident radiation (I_t)
|
338 |
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
339 |
ground_reflected = ground_reflectivity * ghi * view_factor
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
343 |
solar_heat_gain = 0.0
|
344 |
-
|
345 |
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
346 |
-
|
347 |
shgc = 0.7
|
348 |
-
if
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
356 |
iac = getattr(component, 'shading_coefficient', 1.0)
|
357 |
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
358 |
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000
|
359 |
-
|
360 |
logger.info(f"Fenestration solar heat gain for {component_name} at {month}/{day}/{hour}: "
|
361 |
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
362 |
f"I_t={I_t:.2f}, iac={iac})")
|
363 |
-
|
364 |
-
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.
|
365 |
-
surface_resistance = 1
|
366 |
solar_heat_gain = component.area * absorptivity * I_t * surface_resistance / 1000
|
367 |
-
|
368 |
logger.info(f"Opaque surface solar heat gain for {component_name} at {month}/{day}/{hour}: "
|
369 |
f"{solar_heat_gain:.4f} kW (area={component.area}, absorptivity={absorptivity:.2f}, "
|
370 |
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
371 |
-
|
372 |
return solar_heat_gain
|
373 |
|
374 |
except Exception as e:
|
@@ -380,51 +375,34 @@ class TFMCalculations:
|
|
380 |
"""Calculate total internal load in kW."""
|
381 |
total_load = 0
|
382 |
for group in internal_loads.get("people", []):
|
383 |
-
activity_data = group
|
384 |
-
sensible = (activity_data
|
385 |
-
latent = (activity_data
|
386 |
-
|
387 |
-
|
388 |
-
total_load += group.get("num_people", 0) * (sensible + latent) * diversity_factor
|
389 |
-
|
390 |
for light in internal_loads.get("lighting", []):
|
391 |
-
lpd = light
|
392 |
-
|
393 |
-
fraction =
|
394 |
-
lighting_load = lpd * light
|
395 |
total_load += lighting_load
|
396 |
-
|
397 |
for equip in internal_loads.get("equipment", []):
|
398 |
-
|
399 |
-
latent_gain = equip.get("latent_gain", 0)
|
400 |
-
schedule = internal_loads["schedules"].get(equip.get("schedule", ""), {})
|
401 |
-
fraction = schedule.get("weekday", [1.0]*24)[hour % 24] if schedule else 1.0
|
402 |
-
equipment_load = (sensible_gain + latent_gain) * equip.get("area", area) * fraction
|
403 |
total_load += equipment_load
|
404 |
-
|
405 |
return total_load / 1000
|
406 |
|
407 |
@staticmethod
|
408 |
-
def calculate_ventilation_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") ->
|
409 |
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
410 |
if mode == "none":
|
411 |
return 0, 0
|
412 |
-
ventilation = internal_loads.get("ventilation", [])
|
413 |
-
if not ventilation:
|
414 |
-
return 0, 0
|
415 |
total_ventilation_flow = 0
|
416 |
-
for
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
else:
|
423 |
-
flow = vent.get("design_flow_rate", 0.0) / 1000 # L/s to m³/s
|
424 |
-
schedule = internal_loads["schedules"].get(vent.get("schedule", ""), {})
|
425 |
-
fraction = schedule.get("weekday", [1.0]*24)[hour % 24] if schedule else 1.0
|
426 |
-
total_ventilation_flow += flow * fraction
|
427 |
-
|
428 |
air_density = 1.2
|
429 |
specific_heat = 1000
|
430 |
delta_t = outdoor_temp - indoor_temp
|
@@ -438,33 +416,13 @@ class TFMCalculations:
|
|
438 |
return cooling_load, heating_load
|
439 |
|
440 |
@staticmethod
|
441 |
-
def calculate_infiltration_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") ->
|
442 |
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
443 |
if mode == "none":
|
444 |
return 0, 0
|
445 |
-
infiltration = internal_loads.get("infiltration", [])
|
446 |
-
if not infiltration:
|
447 |
-
return 0, 0
|
448 |
total_infiltration_flow = 0
|
449 |
-
|
450 |
-
|
451 |
-
design_flow_rate = inf.get("design_flow_rate", 0.5) # ACH
|
452 |
-
building_height = building_info.get("building_height", 3.0)
|
453 |
-
volume = area * building_height
|
454 |
-
flow = design_flow_rate * volume / 3600 # m³/s
|
455 |
-
elif inf.get("system_type") == "Crack Flow":
|
456 |
-
ela = inf.get("effective_air_leakage_area", 0.0001) / 10000 # cm² to m²
|
457 |
-
wind_speed = 4.0
|
458 |
-
flow = ela * area * wind_speed / 2
|
459 |
-
else: # Empirical Equations
|
460 |
-
c = inf.get("flow_coefficient", 0.0001)
|
461 |
-
n = inf.get("pressure_exponent", 0.65)
|
462 |
-
delta_t_abs = abs(outdoor_temp - indoor_temp)
|
463 |
-
flow = c * (delta_t_abs ** n) * area / 3600
|
464 |
-
schedule = internal_loads["schedules"].get(inf.get("schedule", ""), {})
|
465 |
-
fraction = schedule.get("weekday", [1.0]*24)[hour % 24] if schedule else 1.0
|
466 |
-
total_infiltration_flow += flow * fraction
|
467 |
-
|
468 |
air_density = 1.2
|
469 |
specific_heat = 1000
|
470 |
delta_t = outdoor_temp - indoor_temp
|
@@ -472,6 +430,22 @@ class TFMCalculations:
|
|
472 |
return 0, 0
|
473 |
if mode == "heating" and delta_t >= 0:
|
474 |
return 0, 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
load = total_infiltration_flow * air_density * specific_heat * delta_t / 1000
|
476 |
cooling_load = load if mode == "cooling" else 0
|
477 |
heating_load = -load if mode == "heating" else 0
|
@@ -486,15 +460,15 @@ class TFMCalculations:
|
|
486 |
|
487 |
@staticmethod
|
488 |
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
489 |
-
"""Filter hourly data based on simulation period."""
|
490 |
if sim_period.get("type") == "Full Year":
|
491 |
return hourly_data
|
492 |
filtered_data = []
|
493 |
if sim_period.get("type") == "From-to":
|
494 |
-
start_month = sim_period
|
495 |
-
start_day = sim_period
|
496 |
-
end_month = sim_period
|
497 |
-
end_day = sim_period
|
498 |
for data in hourly_data:
|
499 |
month, day = data["month"], data["day"]
|
500 |
if (month > start_month or (month == start_month and day >= start_day)) and \
|
@@ -510,21 +484,20 @@ class TFMCalculations:
|
|
510 |
|
511 |
@staticmethod
|
512 |
def get_indoor_conditions(indoor_conditions: Dict, hour: int, outdoor_temp: float, building_info: Dict) -> Dict:
|
513 |
-
"""Determine indoor conditions based on user settings."""
|
|
|
|
|
|
|
|
|
|
|
514 |
if indoor_conditions.get("type") == "Fixed":
|
515 |
-
mode = "none" if abs(outdoor_temp -
|
516 |
if mode == "cooling":
|
517 |
-
return {
|
518 |
-
"temperature": building_info.get("summer_indoor_design_temp", 24.0),
|
519 |
-
"rh": building_info.get("summer_indoor_design_rh", 50.0)
|
520 |
-
}
|
521 |
elif mode == "heating":
|
522 |
-
return {
|
523 |
-
"temperature": building_info.get("winter_indoor_design_temp", 22.0),
|
524 |
-
"rh": building_info.get("winter_indoor_design_rh", 50.0)
|
525 |
-
}
|
526 |
else:
|
527 |
-
return {"temperature":
|
528 |
elif indoor_conditions.get("type") == "Time-varying":
|
529 |
schedule = indoor_conditions.get("schedule", [])
|
530 |
if schedule:
|
@@ -532,24 +505,24 @@ class TFMCalculations:
|
|
532 |
for entry in schedule:
|
533 |
if entry["hour"] == hour_idx:
|
534 |
return {"temperature": entry["temperature"], "rh": entry["rh"]}
|
535 |
-
return {"temperature":
|
536 |
else: # Adaptive
|
537 |
-
return {"temperature": TFMCalculations.get_adaptive_comfort_temp(outdoor_temp), "rh":
|
538 |
|
539 |
@staticmethod
|
540 |
def calculate_tfm_loads(components: Dict, hourly_data: List[Dict], indoor_conditions: Dict, internal_loads: Dict, building_info: Dict, sim_period: Dict, hvac_settings: Dict) -> List[Dict]:
|
541 |
-
"""Calculate TFM loads for heating and cooling."""
|
542 |
filtered_data = TFMCalculations.filter_hourly_data(hourly_data, sim_period, building_info)
|
543 |
temp_loads = []
|
544 |
building_orientation = building_info.get("orientation_angle", 0.0)
|
545 |
-
|
|
|
546 |
area = building_info.get("floor_area", 100.0)
|
|
|
|
|
|
|
|
|
547 |
|
548 |
-
if "material_library" not in st.session_state:
|
549 |
-
st.session_state.material_library = MaterialLibrary()
|
550 |
-
logger.info("Initialized MaterialLibrary in session_state")
|
551 |
-
|
552 |
-
# Pre-calculate CTF coefficients
|
553 |
for comp_list in components.values():
|
554 |
for comp in comp_list:
|
555 |
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
@@ -559,18 +532,24 @@ class TFMCalculations:
|
|
559 |
outdoor_temp = hour_data["dry_bulb"]
|
560 |
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp, building_info)
|
561 |
indoor_temp = indoor_cond["temperature"]
|
562 |
-
|
563 |
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
564 |
-
is_operating =
|
565 |
-
|
566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
if is_operating and mode == "cooling":
|
568 |
for comp_list in components.values():
|
569 |
for comp in comp_list:
|
570 |
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
571 |
conduction_cooling += cool_load
|
572 |
solar += TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
573 |
-
|
|
|
574 |
ventilation_cooling, _ = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
575 |
infiltration_cooling, _ = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
576 |
elif is_operating and mode == "heating":
|
@@ -578,12 +557,12 @@ class TFMCalculations:
|
|
578 |
for comp in comp_list:
|
579 |
_, heat_load = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="heating")
|
580 |
conduction_heating += heat_load
|
581 |
-
internal = TFMCalculations.calculate_internal_load(internal_loads, hour,
|
582 |
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
583 |
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
584 |
else:
|
585 |
internal = 0
|
586 |
-
|
587 |
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
588 |
|
589 |
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
@@ -592,7 +571,6 @@ class TFMCalculations:
|
|
592 |
total_heating = 0
|
593 |
elif mode == "heating":
|
594 |
total_cooling = 0
|
595 |
-
|
596 |
temp_loads.append({
|
597 |
"hour": hour,
|
598 |
"month": hour_data["month"],
|
@@ -608,7 +586,7 @@ class TFMCalculations:
|
|
608 |
"total_cooling": total_cooling,
|
609 |
"total_heating": total_heating
|
610 |
})
|
611 |
-
|
612 |
loads_by_day = defaultdict(list)
|
613 |
for load in temp_loads:
|
614 |
day_key = (load["month"], load["day"])
|
@@ -629,59 +607,67 @@ class TFMCalculations:
|
|
629 |
return final_loads
|
630 |
|
631 |
def display_hvac_loads_page():
|
632 |
-
"""Display the HVAC Loads page and
|
633 |
-
st.
|
634 |
-
|
635 |
-
|
636 |
project_data = st.session_state.project_data
|
637 |
components = project_data.get("components", {})
|
638 |
climate_data = project_data.get("climate_data", {})
|
|
|
639 |
internal_loads = project_data.get("internal_loads", {})
|
640 |
building_info = project_data.get("building_info", {})
|
|
|
|
|
641 |
sim_period = climate_data.get("typical_extreme_periods", {"type": "Full Year"})
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
|
|
|
|
653 |
if st.button("Calculate HVAC Loads"):
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
st.
|
684 |
-
|
|
|
|
|
|
|
685 |
|
686 |
if __name__ == "__main__":
|
687 |
display_hvac_loads_page()
|
|
|
14 |
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
15 |
from enum import Enum
|
16 |
import streamlit as st
|
17 |
+
from app.materials_library import MaterialLibrary, Material, GlazingMaterial
|
18 |
+
from app.construction import Construction
|
19 |
from datetime import datetime
|
20 |
from collections import defaultdict
|
21 |
import logging
|
22 |
import math
|
23 |
from utils.ctf_calculations import CTFCalculator, ComponentType, CTFCoefficients
|
|
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
54 |
}
|
55 |
|
56 |
@staticmethod
|
57 |
+
def calculate_conduction_load(component, outdoor_temp: float, indoor_temp: float, hour: int, mode: str = "none") -> tuple[float, float]:
|
58 |
"""Calculate conduction load for heating and cooling in kW based on mode."""
|
59 |
if mode == "none":
|
60 |
return 0, 0
|
|
|
65 |
return 0, 0
|
66 |
|
67 |
# Get CTF coefficients using CTFCalculator
|
68 |
+
ctf = CTFCalculator.calculate_ctf_coefficients(component)
|
69 |
+
|
70 |
+
# Initialize history terms (simplified: assume steady-state history for demonstration)
|
|
|
71 |
load = component.u_value * component.area * delta_t
|
72 |
+
for i in range(len(ctf.Y)):
|
73 |
+
load += component.area * ctf.Y[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
74 |
+
load -= component.area * ctf.Z[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
75 |
cooling_load = load / 1000 if mode == "cooling" else 0
|
76 |
heating_load = -load / 1000 if mode == "heating" else 0
|
77 |
return cooling_load, heating_load
|
|
|
103 |
c = TFMCalculations.SHGC_COEFFICIENTS[glazing_type]
|
104 |
f_cos_theta = (c[0] + c[1] * cos_theta + c[2] * cos_theta**2 +
|
105 |
c[3] * cos_theta**3 + c[4] * cos_theta**4 + c[5] * cos_theta**5)
|
106 |
+
return f_cos_theta
|
107 |
|
108 |
@staticmethod
|
109 |
+
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
110 |
+
project_materials: Dict, project_constructions: Dict,
|
111 |
+
project_fenestrations: Dict) -> Tuple[float, float, float, Optional[float], float]:
|
112 |
"""
|
113 |
+
Determine surface parameters (tilt, azimuth, h_o, emissivity, absorptivity) for a component.
|
114 |
+
Uses MaterialLibrary for materials/fenestrations and Construction for walls/roofs/floors.
|
115 |
"""
|
116 |
component_name = getattr(component, 'name', 'unnamed_component')
|
117 |
|
118 |
+
# Initialize default values
|
119 |
+
surface_tilt = 90.0 # Default vertical for walls, windows
|
120 |
+
surface_azimuth = 0.0 # Default north-facing
|
121 |
+
h_o = 17.0 # Default exterior convection coefficient
|
122 |
emissivity = 0.9 # Default for opaque components
|
123 |
+
absorptivity = 0.6 # Default
|
124 |
+
|
125 |
try:
|
126 |
+
# Set component-specific defaults based on type
|
127 |
if component.component_type == ComponentType.ROOF:
|
128 |
+
surface_tilt = getattr(component, 'tilt', 0.0)
|
129 |
h_o = 23.0
|
130 |
+
surface_azimuth = getattr(component, 'rotation', 0.0)
|
131 |
+
logger.debug(f"Roof component {component_name}: using rotation={surface_azimuth}, tilt={surface_tilt}")
|
132 |
+
|
133 |
elif component.component_type == ComponentType.SKYLIGHT:
|
134 |
+
surface_tilt = getattr(component, 'tilt', 0.0)
|
135 |
h_o = 23.0
|
136 |
+
surface_azimuth = getattr(component, 'rotation', 0.0)
|
137 |
+
logger.debug(f"Skylight component {component_name}: using rotation={surface_azimuth}, tilt={surface_tilt}")
|
138 |
+
|
139 |
elif component.component_type == ComponentType.FLOOR:
|
140 |
surface_tilt = 180.0
|
141 |
+
h_o = 17.0
|
142 |
surface_azimuth = 0.0
|
143 |
+
logger.debug(f"Floor component {component_name}: using default azimuth={surface_azimuth}, tilt={surface_tilt}")
|
144 |
+
|
145 |
+
else: # WALL, WINDOW
|
146 |
+
surface_tilt = 90.0
|
147 |
h_o = 17.0
|
148 |
+
elevation = getattr(component, 'elevation', None)
|
149 |
+
if not elevation:
|
150 |
+
logger.warning(f"Component {component_name} ({component.component_type.value}) is missing 'elevation' field. Using default azimuth=0.")
|
151 |
+
surface_azimuth = 0.0
|
|
|
|
|
152 |
else:
|
153 |
+
elevation_angles = {
|
154 |
+
"A": building_info.get("orientation_angle", 0.0),
|
155 |
+
"B": (building_info.get("orientation_angle", 0.0) + 90.0) % 360,
|
156 |
+
"C": (building_info.get("orientation_angle", 0.0) + 180.0) % 360,
|
157 |
+
"D": (building_info.get("orientation_angle", 0.0) + 270.0) % 360
|
158 |
+
}
|
159 |
+
if elevation not in elevation_angles:
|
160 |
+
logger.warning(f"Invalid elevation '{elevation}' for component {component_name}. Using default azimuth=0.")
|
161 |
+
surface_azimuth = 0.0
|
162 |
else:
|
163 |
+
surface_azimuth = (elevation_angles[elevation] + getattr(component, 'rotation', 0.0)) % 360
|
164 |
+
logger.debug(f"Component {component_name}: elevation={elevation}, total_azimuth={surface_azimuth}, tilt={surface_tilt}")
|
165 |
+
|
166 |
+
# Fetch material properties
|
167 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR]:
|
168 |
+
construction = getattr(component, 'construction', None)
|
169 |
+
if not construction:
|
170 |
+
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). Using defaults: absorptivity=0.6, emissivity=0.9.")
|
|
|
|
|
|
|
|
|
|
|
171 |
else:
|
172 |
+
construction_obj = project_constructions.get(construction) or material_library.library_constructions.get(construction)
|
173 |
+
if not construction_obj or not construction_obj.layers:
|
174 |
+
logger.warning(f"Construction not found or empty for {component_name}. Using defaults.")
|
|
|
175 |
else:
|
176 |
+
absorptivity = getattr(construction_obj, 'absorptivity', 0.6)
|
177 |
+
emissivity = getattr(construction_obj, 'emissivity', 0.9)
|
178 |
+
logger.debug(f"Using construction for {component_name}: absorptivity={absorptivity}, emissivity={emissivity}")
|
|
|
179 |
|
180 |
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
181 |
+
fenestration = getattr(component, 'fenestration', None)
|
182 |
+
if not fenestration:
|
183 |
+
logger.warning(f"No fenestration defined for {component_name} ({component.component_type.value}). Using default SHGC=0.7, h_o={h_o}.")
|
184 |
shgc = 0.7
|
185 |
else:
|
186 |
+
fenestration_obj = project_fenestrations.get(fenestration) or material_library.library_fenestrations.get(fenestration)
|
187 |
+
if not fenestration_obj:
|
188 |
+
logger.warning(f"Fenestration not found for {component_name}. Using default SHGC=0.7.")
|
|
|
189 |
shgc = 0.7
|
190 |
else:
|
191 |
+
shgc = getattr(fenestration_obj, 'shgc', 0.7)
|
192 |
+
h_o = getattr(fenestration_obj, 'h_o', h_o)
|
193 |
+
logger.debug(f"Using fenestration for {component_name}: shgc={shgc}, h_o={h_o}")
|
194 |
+
emissivity = None # Not used for fenestration
|
195 |
|
196 |
except Exception as e:
|
197 |
logger.error(f"Error retrieving surface parameters for {component_name}: {str(e)}")
|
198 |
if component.component_type == ComponentType.ROOF:
|
199 |
surface_tilt = 0.0
|
|
|
200 |
h_o = 23.0
|
201 |
+
surface_azimuth = 0.0
|
202 |
elif component.component_type == ComponentType.SKYLIGHT:
|
203 |
surface_tilt = 0.0
|
|
|
204 |
h_o = 23.0
|
205 |
+
surface_azimuth = 0.0
|
206 |
elif component.component_type == ComponentType.FLOOR:
|
207 |
surface_tilt = 180.0
|
|
|
208 |
h_o = 17.0
|
209 |
+
surface_azimuth = 0.0
|
210 |
else:
|
211 |
surface_tilt = 90.0
|
|
|
212 |
h_o = 17.0
|
213 |
+
surface_azimuth = 0.0
|
214 |
+
absorptivity = 0.6 if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR] else 0.0
|
215 |
+
emissivity = 0.9 if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR] else None
|
216 |
|
217 |
+
logger.info(f"Final surface parameters for {component_name}: tilt={surface_tilt:.1f}, azimuth={surface_azimuth:.1f}, h_o={h_o:.1f}")
|
218 |
return surface_tilt, surface_azimuth, h_o, emissivity, absorptivity
|
219 |
|
220 |
@staticmethod
|
221 |
+
def calculate_solar_load(component, hourly_data: Dict, hour: int, building_orientation: float, mode: str = "none") -> float:
|
222 |
"""Calculate solar load in kW (cooling only) using ASHRAE-compliant solar calculations."""
|
223 |
+
if mode != "cooling":
|
224 |
+
return 0
|
225 |
+
if component.component_type == ComponentType.FLOOR:
|
226 |
return 0
|
227 |
|
228 |
component_name = getattr(component, 'name', 'unnamed_component')
|
229 |
|
230 |
try:
|
231 |
+
material_library = st.session_state.project_data.get("material_library", MaterialLibrary())
|
232 |
+
project_materials = st.session_state.project_data.get("materials", {}).get("project", {})
|
233 |
+
project_constructions = st.session_state.project_data.get("constructions", {}).get("project", {})
|
234 |
+
project_fenestrations = st.session_state.project_data.get("fenestrations", {}).get("project", {})
|
235 |
+
|
236 |
+
climate_data = st.session_state.project_data.get("climate_data", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
latitude = climate_data.get("latitude", 0.0)
|
238 |
longitude = climate_data.get("longitude", 0.0)
|
239 |
+
timezone = climate_data.get("time_zone", 0.0)
|
240 |
ground_reflectivity = climate_data.get("ground_reflectivity", 0.2)
|
241 |
|
|
|
242 |
if not -90 <= latitude <= 90:
|
243 |
logger.warning(f"Invalid latitude {latitude} for {component_name}. Using default 0.0.")
|
244 |
latitude = 0.0
|
|
|
252 |
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name}. Using default 0.2.")
|
253 |
ground_reflectivity = 0.2
|
254 |
|
255 |
+
required_fields = ["month", "day", "hour", "global_horizontal_radiation", "direct_normal_radiation",
|
256 |
+
"diffuse_horizontal_radiation", "dry_bulb"]
|
|
|
257 |
if not all(field in hourly_data for field in required_fields):
|
258 |
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name}: {hourly_data}")
|
259 |
return 0
|
|
|
277 |
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
278 |
f"dry_bulb={outdoor_temp} for {component_name}")
|
279 |
|
|
|
280 |
year = 2025
|
281 |
n = TFMCalculations.day_of_year(month, day, year)
|
282 |
EOT = TFMCalculations.equation_of_time(n)
|
283 |
lambda_std = 15 * timezone
|
284 |
standard_time = hour - 1 + 0.5
|
285 |
+
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
286 |
|
|
|
287 |
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
|
|
|
|
288 |
hra = 15 * (LST - 12)
|
|
|
|
|
289 |
phi = math.radians(latitude)
|
290 |
delta_rad = math.radians(delta)
|
291 |
hra_rad = math.radians(hra)
|
|
|
305 |
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
306 |
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name}")
|
307 |
|
308 |
+
building_info = {"orientation_angle": building_orientation}
|
|
|
309 |
surface_tilt, surface_azimuth, h_o, emissivity, absorptivity = \
|
310 |
TFMCalculations.get_surface_parameters(
|
311 |
component, building_info, material_library, project_materials,
|
312 |
+
project_constructions, project_fenestrations
|
313 |
)
|
314 |
|
|
|
315 |
alpha_rad = math.radians(alpha)
|
316 |
surface_tilt_rad = math.radians(surface_tilt)
|
317 |
azimuth_rad = math.radians(azimuth)
|
|
|
326 |
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
327 |
f"cos_theta={cos_theta:.4f}")
|
328 |
|
|
|
329 |
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
330 |
ground_reflected = ground_reflectivity * ghi * view_factor
|
331 |
+
|
332 |
+
if cos_theta > 0:
|
333 |
+
I_t = dni * cos_theta + dhi + ground_reflected
|
334 |
+
else:
|
335 |
+
I_t = dhi + ground_reflected
|
336 |
+
|
337 |
solar_heat_gain = 0.0
|
338 |
+
|
339 |
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
340 |
+
fenestration = getattr(component, 'fenestration', None)
|
341 |
shgc = 0.7
|
342 |
+
if fenestration:
|
343 |
+
fenestration_obj = project_fenestrations.get(fenestration) or material_library.library_fenestrations.get(fenestration)
|
344 |
+
if fenestration_obj:
|
345 |
+
shgc = getattr(fenestration_obj, 'shgc', 0.7)
|
346 |
+
h_o = getattr(fenestration_obj, 'h_o', h_o)
|
347 |
+
else:
|
348 |
+
logger.warning(f"Fenestration not found for {component_name}. Using default SHGC=0.7.")
|
349 |
+
|
350 |
+
glazing_type = TFMCalculations.GLAZING_TYPE_MAPPING.get(fenestration, "Single Clear")
|
351 |
iac = getattr(component, 'shading_coefficient', 1.0)
|
352 |
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
353 |
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000
|
354 |
+
|
355 |
logger.info(f"Fenestration solar heat gain for {component_name} at {month}/{day}/{hour}: "
|
356 |
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
357 |
f"I_t={I_t:.2f}, iac={iac})")
|
358 |
+
|
359 |
+
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR]:
|
360 |
+
surface_resistance = 1/h_o
|
361 |
solar_heat_gain = component.area * absorptivity * I_t * surface_resistance / 1000
|
362 |
+
|
363 |
logger.info(f"Opaque surface solar heat gain for {component_name} at {month}/{day}/{hour}: "
|
364 |
f"{solar_heat_gain:.4f} kW (area={component.area}, absorptivity={absorptivity:.2f}, "
|
365 |
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
366 |
+
|
367 |
return solar_heat_gain
|
368 |
|
369 |
except Exception as e:
|
|
|
375 |
"""Calculate total internal load in kW."""
|
376 |
total_load = 0
|
377 |
for group in internal_loads.get("people", []):
|
378 |
+
activity_data = group["activity_data"]
|
379 |
+
sensible = (activity_data["sensible_min_w"] + activity_data["sensible_max_w"]) / 2
|
380 |
+
latent = (activity_data["latent_min_w"] + activity_data["latent_max_w"]) / 2
|
381 |
+
load_per_person = sensible + latent
|
382 |
+
total_load += group["num_people"] * load_per_person * group.get("diversity_factor", 1.0)
|
|
|
|
|
383 |
for light in internal_loads.get("lighting", []):
|
384 |
+
lpd = light["lpd"]
|
385 |
+
lighting_operating_hours = light.get("operating_hours", operation_hours)
|
386 |
+
fraction = min(lighting_operating_hours, operation_hours) / operation_hours if operation_hours > 0 else 0
|
387 |
+
lighting_load = lpd * light["area"] * fraction
|
388 |
total_load += lighting_load
|
|
|
389 |
for equip in internal_loads.get("equipment", []):
|
390 |
+
equipment_load = equip["equipment_load"] * equip["area"]
|
|
|
|
|
|
|
|
|
391 |
total_load += equipment_load
|
|
|
392 |
return total_load / 1000
|
393 |
|
394 |
@staticmethod
|
395 |
+
def calculate_ventilation_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
396 |
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
397 |
if mode == "none":
|
398 |
return 0, 0
|
|
|
|
|
|
|
399 |
total_ventilation_flow = 0
|
400 |
+
num_people = sum(group["num_people"] for group in internal_loads.get("people", []))
|
401 |
+
for ventilation in internal_loads.get("ventilation", []):
|
402 |
+
space_rate = ventilation.get("design_flow_rate", 0.3) # L/s/m²
|
403 |
+
total_ventilation_flow += space_rate * ventilation["area"] / 1000 # m³/s
|
404 |
+
if not internal_loads.get("ventilation"):
|
405 |
+
total_ventilation_flow = 0.3 * area / 1000 + 2.5 * num_people / 1000 # Default rates
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
air_density = 1.2
|
407 |
specific_heat = 1000
|
408 |
delta_t = outdoor_temp - indoor_temp
|
|
|
416 |
return cooling_load, heating_load
|
417 |
|
418 |
@staticmethod
|
419 |
+
def calculate_infiltration_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
420 |
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
421 |
if mode == "none":
|
422 |
return 0, 0
|
|
|
|
|
|
|
423 |
total_infiltration_flow = 0
|
424 |
+
building_height = building_info.get("building_height", 3.0)
|
425 |
+
volume = area * building_height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
air_density = 1.2
|
427 |
specific_heat = 1000
|
428 |
delta_t = outdoor_temp - indoor_temp
|
|
|
430 |
return 0, 0
|
431 |
if mode == "heating" and delta_t >= 0:
|
432 |
return 0, 0
|
433 |
+
for infiltration in internal_loads.get("infiltration", []):
|
434 |
+
method = infiltration.get("system_type", "AirChanges/Hour")
|
435 |
+
if method == "AirChanges/Hour":
|
436 |
+
ach = infiltration.get("design_flow_rate", 0.5)
|
437 |
+
total_infiltration_flow += ach * volume / 3600
|
438 |
+
elif method == "Crack Flow":
|
439 |
+
ela = infiltration.get("effective_air_leakage_area", 0.0001) / 10000 # cm² to m²
|
440 |
+
wind_speed = 4.0
|
441 |
+
total_infiltration_flow += ela * infiltration["area"] * wind_speed / 2
|
442 |
+
else: # Flow Equation
|
443 |
+
c = infiltration.get("flow_coefficient", 0.0001)
|
444 |
+
n = infiltration.get("pressure_exponent", 0.65)
|
445 |
+
delta_t_abs = abs(delta_t)
|
446 |
+
total_infiltration_flow += c * (delta_t_abs ** n) * infiltration["area"] / 3600
|
447 |
+
if not internal_loads.get("infiltration"):
|
448 |
+
total_infiltration_flow = 0.5 * volume / 3600 # Default ACH
|
449 |
load = total_infiltration_flow * air_density * specific_heat * delta_t / 1000
|
450 |
cooling_load = load if mode == "cooling" else 0
|
451 |
heating_load = -load if mode == "heating" else 0
|
|
|
460 |
|
461 |
@staticmethod
|
462 |
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
463 |
+
"""Filter hourly data based on simulation period, ignoring year."""
|
464 |
if sim_period.get("type") == "Full Year":
|
465 |
return hourly_data
|
466 |
filtered_data = []
|
467 |
if sim_period.get("type") == "From-to":
|
468 |
+
start_month = sim_period["start_date"].month
|
469 |
+
start_day = sim_period["start_date"].day
|
470 |
+
end_month = sim_period["end_date"].month
|
471 |
+
end_day = sim_period["end_date"].day
|
472 |
for data in hourly_data:
|
473 |
month, day = data["month"], data["day"]
|
474 |
if (month > start_month or (month == start_month and day >= start_day)) and \
|
|
|
484 |
|
485 |
@staticmethod
|
486 |
def get_indoor_conditions(indoor_conditions: Dict, hour: int, outdoor_temp: float, building_info: Dict) -> Dict:
|
487 |
+
"""Determine indoor conditions based on user settings and building_info."""
|
488 |
+
winter_temp = building_info.get("winter_indoor_design_temp", 20.0)
|
489 |
+
summer_temp = building_info.get("summer_indoor_design_temp", 24.0)
|
490 |
+
winter_rh = building_info.get("winter_indoor_design_rh", 50.0)
|
491 |
+
summer_rh = building_info.get("summer_indoor_design_rh", 50.0)
|
492 |
+
|
493 |
if indoor_conditions.get("type") == "Fixed":
|
494 |
+
mode = "none" if abs(outdoor_temp - winter_temp) < 0.01 else "cooling" if outdoor_temp > summer_temp else "heating"
|
495 |
if mode == "cooling":
|
496 |
+
return {"temperature": summer_temp, "rh": summer_rh}
|
|
|
|
|
|
|
497 |
elif mode == "heating":
|
498 |
+
return {"temperature": winter_temp, "rh": winter_rh}
|
|
|
|
|
|
|
499 |
else:
|
500 |
+
return {"temperature": (winter_temp + summer_temp) / 2, "rh": (winter_rh + summer_rh) / 2}
|
501 |
elif indoor_conditions.get("type") == "Time-varying":
|
502 |
schedule = indoor_conditions.get("schedule", [])
|
503 |
if schedule:
|
|
|
505 |
for entry in schedule:
|
506 |
if entry["hour"] == hour_idx:
|
507 |
return {"temperature": entry["temperature"], "rh": entry["rh"]}
|
508 |
+
return {"temperature": (winter_temp + summer_temp) / 2, "rh": (winter_rh + summer_rh) / 2}
|
509 |
else: # Adaptive
|
510 |
+
return {"temperature": TFMCalculations.get_adaptive_comfort_temp(outdoor_temp), "rh": (winter_rh + summer_rh) / 2}
|
511 |
|
512 |
@staticmethod
|
513 |
def calculate_tfm_loads(components: Dict, hourly_data: List[Dict], indoor_conditions: Dict, internal_loads: Dict, building_info: Dict, sim_period: Dict, hvac_settings: Dict) -> List[Dict]:
|
514 |
+
"""Calculate TFM loads for heating and cooling with user-defined filters and temperature threshold."""
|
515 |
filtered_data = TFMCalculations.filter_hourly_data(hourly_data, sim_period, building_info)
|
516 |
temp_loads = []
|
517 |
building_orientation = building_info.get("orientation_angle", 0.0)
|
518 |
+
operation_hours = building_info.get("operation_hours", 8)
|
519 |
+
operating_periods = [{"start": 8, "end": 8 + operation_hours}] # Convert float to dict
|
520 |
area = building_info.get("floor_area", 100.0)
|
521 |
+
|
522 |
+
if "material_library" not in st.session_state.project_data:
|
523 |
+
st.session_state.project_data["material_library"] = MaterialLibrary()
|
524 |
+
logger.info("Initialized MaterialLibrary in session_state for solar calculations")
|
525 |
|
|
|
|
|
|
|
|
|
|
|
526 |
for comp_list in components.values():
|
527 |
for comp in comp_list:
|
528 |
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
|
|
532 |
outdoor_temp = hour_data["dry_bulb"]
|
533 |
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp, building_info)
|
534 |
indoor_temp = indoor_cond["temperature"]
|
|
|
535 |
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
536 |
+
is_operating = False
|
537 |
+
for period in operating_periods:
|
538 |
+
start_hour = period.get("start", 8)
|
539 |
+
end_hour = period.get("end", 18)
|
540 |
+
if start_hour <= hour % 24 <= end_hour:
|
541 |
+
is_operating = True
|
542 |
+
break
|
543 |
+
mode = "none" if abs(outdoor_temp - building_info.get("winter_indoor_design_temp", 20.0)) < 0.01 else \
|
544 |
+
"cooling" if outdoor_temp > building_info.get("summer_indoor_design_temp", 24.0) else "heating"
|
545 |
if is_operating and mode == "cooling":
|
546 |
for comp_list in components.values():
|
547 |
for comp in comp_list:
|
548 |
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
549 |
conduction_cooling += cool_load
|
550 |
solar += TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
551 |
+
logger.info(f"Component {comp.name} solar load: {solar:.3f} kW")
|
552 |
+
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, operation_hours, area)
|
553 |
ventilation_cooling, _ = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
554 |
infiltration_cooling, _ = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
555 |
elif is_operating and mode == "heating":
|
|
|
557 |
for comp in comp_list:
|
558 |
_, heat_load = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="heating")
|
559 |
conduction_heating += heat_load
|
560 |
+
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, operation_hours, area)
|
561 |
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
562 |
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
563 |
else:
|
564 |
internal = 0
|
565 |
+
|
566 |
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
567 |
|
568 |
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
|
|
571 |
total_heating = 0
|
572 |
elif mode == "heating":
|
573 |
total_cooling = 0
|
|
|
574 |
temp_loads.append({
|
575 |
"hour": hour,
|
576 |
"month": hour_data["month"],
|
|
|
586 |
"total_cooling": total_cooling,
|
587 |
"total_heating": total_heating
|
588 |
})
|
589 |
+
|
590 |
loads_by_day = defaultdict(list)
|
591 |
for load in temp_loads:
|
592 |
day_key = (load["month"], load["day"])
|
|
|
607 |
return final_loads
|
608 |
|
609 |
def display_hvac_loads_page():
|
610 |
+
"""Display the HVAC Loads page and perform calculations."""
|
611 |
+
st.header("HVAC Loads")
|
612 |
+
|
613 |
+
# Access project data
|
614 |
project_data = st.session_state.project_data
|
615 |
components = project_data.get("components", {})
|
616 |
climate_data = project_data.get("climate_data", {})
|
617 |
+
hourly_data = climate_data.get("hourly_data", [])
|
618 |
internal_loads = project_data.get("internal_loads", {})
|
619 |
building_info = project_data.get("building_info", {})
|
620 |
+
|
621 |
+
# Simulation period (assumed to be in climate_data)
|
622 |
sim_period = climate_data.get("typical_extreme_periods", {"type": "Full Year"})
|
623 |
+
|
624 |
+
# Indoor conditions (modify as needed based on UI inputs)
|
625 |
+
indoor_conditions = {
|
626 |
+
"type": "Fixed", # Could be "Time-varying" or "Adaptive" based on UI
|
627 |
+
"cooling_setpoint": {"temperature": building_info.get("summer_indoor_design_temp", 24.0), "rh": building_info.get("summer_indoor_design_rh", 50.0)},
|
628 |
+
"heating_setpoint": {"temperature": building_info.get("winter_indoor_design_temp", 20.0), "rh": building_info.get("winter_indoor_design_rh", 50.0)}
|
629 |
+
}
|
630 |
+
|
631 |
+
# HVAC settings
|
632 |
+
hvac_settings = {
|
633 |
+
"operating_hours": [{"start": 8, "end": 8 + building_info.get("operation_hours", 8)}]
|
634 |
+
}
|
635 |
+
|
636 |
if st.button("Calculate HVAC Loads"):
|
637 |
+
try:
|
638 |
+
loads = TFMCalculations.calculate_tfm_loads(
|
639 |
+
components=components,
|
640 |
+
hourly_data=hourly_data,
|
641 |
+
indoor_conditions=indoor_conditions,
|
642 |
+
internal_loads=internal_loads,
|
643 |
+
building_info=building_info,
|
644 |
+
sim_period=sim_period,
|
645 |
+
hvac_settings=hvac_settings
|
646 |
+
)
|
647 |
+
|
648 |
+
# Update project_data
|
649 |
+
project_data["hvac_loads"]["cooling"]["hourly"] = [load for load in loads if load["total_cooling"] > 0]
|
650 |
+
project_data["hvac_loads"]["heating"]["hourly"] = [load for load in loads if load["total_heating"] > 0]
|
651 |
+
project_data["hvac_loads"]["cooling"]["peak"] = max((load["total_cooling"] for load in loads), default=0)
|
652 |
+
project_data["hvac_loads"]["heating"]["peak"] = max((load["total_heating"] for load in loads), default=0)
|
653 |
+
|
654 |
+
# Display results
|
655 |
+
st.subheader("Cooling Loads (kW)")
|
656 |
+
cooling_df = pd.DataFrame(project_data["hvac_loads"]["cooling"]["hourly"])
|
657 |
+
if not cooling_df.empty:
|
658 |
+
st.dataframe(cooling_df[["month", "day", "hour", "total_cooling", "conduction_cooling", "solar", "internal", "ventilation_cooling", "infiltration_cooling"]])
|
659 |
+
|
660 |
+
st.subheader("Heating Loads (kW)")
|
661 |
+
heating_df = pd.DataFrame(project_data["hvac_loads"]["heating"]["hourly"])
|
662 |
+
if not heating_df.empty:
|
663 |
+
st.dataframe(heating_df[["month", "day", "hour", "total_heating", "conduction_heating", "internal", "ventilation_heating", "infiltration_heating"]])
|
664 |
+
|
665 |
+
st.write(f"Peak Cooling Load: {project_data['hvac_loads']['cooling']['peak']:.2f} kW")
|
666 |
+
st.write(f"Peak Heating vanguard: {project_data['hvac_loads']['heating']['peak']:.2f} kW")
|
667 |
+
|
668 |
+
except Exception as e:
|
669 |
+
st.error(f"Error calculating HVAC loads: {str(e)}")
|
670 |
+
logger.exception("HVAC load calculation error")
|
671 |
|
672 |
if __name__ == "__main__":
|
673 |
display_hvac_loads_page()
|