Spaces:
Sleeping
Sleeping
Update app/hvac_loads.py
Browse files- app/hvac_loads.py +36 -659
app/hvac_loads.py
CHANGED
@@ -8,666 +8,43 @@ modules to determine the building's thermal loads.
|
|
8 |
Developed by: Dr Majed Abuseif, Deakin University
|
9 |
© 2025
|
10 |
"""
|
11 |
-
|
12 |
-
import numpy as np
|
13 |
-
import pandas as pd
|
14 |
-
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
15 |
-
from enum import Enum
|
16 |
import streamlit as st
|
17 |
-
from app.materials_library import MaterialLibrary, Material, GlazingMaterial
|
18 |
-
# from app.construction import Construction
|
19 |
-
from datetime import datetime
|
20 |
-
from collections import defaultdict
|
21 |
-
import logging
|
22 |
-
import math
|
23 |
-
# from utils.ctf_calculations import CTFCalculator, ComponentType, CTFCoefficients
|
24 |
-
|
25 |
-
# Configure logging
|
26 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
27 |
-
logger = logging.getLogger(__name__)
|
28 |
-
|
29 |
-
class TFMCalculations:
|
30 |
-
# Solar calculation constants (from solar.py)
|
31 |
-
SHGC_COEFFICIENTS = {
|
32 |
-
"Single Clear": [0.1, -0.0, 0.0, -0.0, 0.0, 0.87],
|
33 |
-
"Single Tinted": [0.12, -0.0, 0.0, -0.0, 0.8, -0.0],
|
34 |
-
"Double Clear": [0.14, -0.0, 0.0, -0.0, 0.78, -0.0],
|
35 |
-
"Double Low-E": [0.2, -0.0, 0.0, 0.7, 0.0, -0.0],
|
36 |
-
"Double Tinted": [0.15, -0.0, 0.0, -0.0, 0.65, -0.0],
|
37 |
-
"Double Low-E with Argon": [0.18, -0.0, 0.0, 0.68, 0.0, -0.0],
|
38 |
-
"Single Low-E Reflective": [0.22, -0.0, 0.0, 0.6, 0.0, -0.0],
|
39 |
-
"Double Reflective": [0.24, -0.0, 0.0, 0.58, 0.0, -0.0],
|
40 |
-
"Electrochromic": [0.25, -0.0, 0.5, -0.0, 0.0, -0.0]
|
41 |
-
}
|
42 |
-
|
43 |
-
GLAZING_TYPE_MAPPING = {
|
44 |
-
"Single Clear 3mm": "Single Clear",
|
45 |
-
"Single Clear 6mm": "Single Clear",
|
46 |
-
"Single Tinted 6mm": "Single Tinted",
|
47 |
-
"Double Clear 6mm/13mm Air": "Double Clear",
|
48 |
-
"Double Low-E 6mm/13mm Air": "Double Low-E",
|
49 |
-
"Double Tinted 6mm/13mm Air": "Double Tinted",
|
50 |
-
"Double Low-E 6mm/13mm Argon": "Double Low-E with Argon",
|
51 |
-
"Single Low-E Reflective 6mm": "Single Low-E Reflective",
|
52 |
-
"Double Reflective 6mm/13mm Air": "Double Reflective",
|
53 |
-
"Electrochromic 6mm/13mm Air": "Electrochromic"
|
54 |
-
}
|
55 |
-
|
56 |
-
@staticmethod
|
57 |
-
def calculate_conduction_load(component, outdoor_temp: float, indoor_temp: float, hour: int, mode: str = "none") -> tuple[float, float]:
|
58 |
-
"""Calculate conduction load for heating and cooling in kW based on mode."""
|
59 |
-
if mode == "none":
|
60 |
-
return 0, 0
|
61 |
-
delta_t = outdoor_temp - indoor_temp
|
62 |
-
if mode == "cooling" and delta_t <= 0:
|
63 |
-
return 0, 0
|
64 |
-
if mode == "heating" and delta_t >= 0:
|
65 |
-
return 0, 0
|
66 |
-
|
67 |
-
# Get CTF coefficients using CTFCalculator
|
68 |
-
ctf = CTFCalculator.calculate_ctf_coefficients(component)
|
69 |
-
|
70 |
-
# Initialize history terms (simplified: assume steady-state history for demonstration)
|
71 |
-
load = component.u_value * component.area * delta_t
|
72 |
-
for i in range(len(ctf.Y)):
|
73 |
-
load += component.area * ctf.Y[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
74 |
-
load -= component.area * ctf.Z[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
75 |
-
cooling_load = load / 1000 if mode == "cooling" else 0
|
76 |
-
heating_load = -load / 1000 if mode == "heating" else 0
|
77 |
-
return cooling_load, heating_load
|
78 |
-
|
79 |
-
@staticmethod
|
80 |
-
def day_of_year(month: int, day: int, year: int) -> int:
|
81 |
-
"""Calculate day of the year (n) from month, day, and year, accounting for leap years."""
|
82 |
-
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
83 |
-
if year % 4 == 0 and (year % 100 != 0 or year % 400 == 0):
|
84 |
-
days_in_month[1] = 29
|
85 |
-
return sum(days_in_month[:month-1]) + day
|
86 |
-
|
87 |
-
@staticmethod
|
88 |
-
def equation_of_time(n: int) -> float:
|
89 |
-
"""Calculate Equation of Time (EOT) in minutes using Spencer's formula."""
|
90 |
-
B = (n - 1) * 360 / 365
|
91 |
-
B_rad = math.radians(B)
|
92 |
-
EOT = 229.2 * (0.000075 + 0.001868 * math.cos(B_rad) - 0.032077 * math.sin(B_rad) -
|
93 |
-
0.014615 * math.cos(2 * B_rad) - 0.04089 * math.sin(2 * B_rad))
|
94 |
-
return EOT
|
95 |
-
|
96 |
-
@staticmethod
|
97 |
-
def calculate_dynamic_shgc(glazing_type: str, cos_theta: float) -> float:
|
98 |
-
"""Calculate dynamic SHGC based on incidence angle."""
|
99 |
-
if glazing_type not in TFMCalculations.SHGC_COEFFICIENTS:
|
100 |
-
logger.warning(f"Unknown glazing type '{glazing_type}'. Using default SHGC coefficients for Single Clear.")
|
101 |
-
glazing_type = "Single Clear"
|
102 |
-
|
103 |
-
c = TFMCalculations.SHGC_COEFFICIENTS[glazing_type]
|
104 |
-
f_cos_theta = (c[0] + c[1] * cos_theta + c[2] * cos_theta**2 +
|
105 |
-
c[3] * cos_theta**3 + c[4] * cos_theta**4 + c[5] * cos_theta**5)
|
106 |
-
return f_cos_theta
|
107 |
-
|
108 |
-
@staticmethod
|
109 |
-
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
110 |
-
project_materials: Dict, project_constructions: Dict,
|
111 |
-
project_fenestrations: Dict) -> Tuple[float, float, float, Optional[float], float]:
|
112 |
-
"""
|
113 |
-
Determine surface parameters (tilt, azimuth, h_o, emissivity, absorptivity) for a component.
|
114 |
-
Uses MaterialLibrary for materials/fenestrations and Construction for walls/roofs/floors.
|
115 |
-
"""
|
116 |
-
component_name = getattr(component, 'name', 'unnamed_component')
|
117 |
-
|
118 |
-
# Initialize default values
|
119 |
-
surface_tilt = 90.0 # Default vertical for walls, windows
|
120 |
-
surface_azimuth = 0.0 # Default north-facing
|
121 |
-
h_o = 17.0 # Default exterior convection coefficient
|
122 |
-
emissivity = 0.9 # Default for opaque components
|
123 |
-
absorptivity = 0.6 # Default
|
124 |
-
|
125 |
-
try:
|
126 |
-
# Set component-specific defaults based on type
|
127 |
-
if component.component_type == ComponentType.ROOF:
|
128 |
-
surface_tilt = getattr(component, 'tilt', 0.0)
|
129 |
-
h_o = 23.0
|
130 |
-
surface_azimuth = getattr(component, 'rotation', 0.0)
|
131 |
-
logger.debug(f"Roof component {component_name}: using rotation={surface_azimuth}, tilt={surface_tilt}")
|
132 |
-
|
133 |
-
elif component.component_type == ComponentType.SKYLIGHT:
|
134 |
-
surface_tilt = getattr(component, 'tilt', 0.0)
|
135 |
-
h_o = 23.0
|
136 |
-
surface_azimuth = getattr(component, 'rotation', 0.0)
|
137 |
-
logger.debug(f"Skylight component {component_name}: using rotation={surface_azimuth}, tilt={surface_tilt}")
|
138 |
-
|
139 |
-
elif component.component_type == ComponentType.FLOOR:
|
140 |
-
surface_tilt = 180.0
|
141 |
-
h_o = 17.0
|
142 |
-
surface_azimuth = 0.0
|
143 |
-
logger.debug(f"Floor component {component_name}: using default azimuth={surface_azimuth}, tilt={surface_tilt}")
|
144 |
-
|
145 |
-
else: # WALL, WINDOW
|
146 |
-
surface_tilt = 90.0
|
147 |
-
h_o = 17.0
|
148 |
-
elevation = getattr(component, 'elevation', None)
|
149 |
-
if not elevation:
|
150 |
-
logger.warning(f"Component {component_name} ({component.component_type.value}) is missing 'elevation' field. Using default azimuth=0.")
|
151 |
-
surface_azimuth = 0.0
|
152 |
-
else:
|
153 |
-
elevation_angles = {
|
154 |
-
"A": building_info.get("orientation_angle", 0.0),
|
155 |
-
"B": (building_info.get("orientation_angle", 0.0) + 90.0) % 360,
|
156 |
-
"C": (building_info.get("orientation_angle", 0.0) + 180.0) % 360,
|
157 |
-
"D": (building_info.get("orientation_angle", 0.0) + 270.0) % 360
|
158 |
-
}
|
159 |
-
if elevation not in elevation_angles:
|
160 |
-
logger.warning(f"Invalid elevation '{elevation}' for component {component_name}. Using default azimuth=0.")
|
161 |
-
surface_azimuth = 0.0
|
162 |
-
else:
|
163 |
-
surface_azimuth = (elevation_angles[elevation] + getattr(component, 'rotation', 0.0)) % 360
|
164 |
-
logger.debug(f"Component {component_name}: elevation={elevation}, total_azimuth={surface_azimuth}, tilt={surface_tilt}")
|
165 |
-
|
166 |
-
# Fetch material properties
|
167 |
-
if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR]:
|
168 |
-
construction = getattr(component, 'construction', None)
|
169 |
-
if not construction:
|
170 |
-
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). Using defaults: absorptivity=0.6, emissivity=0.9.")
|
171 |
-
else:
|
172 |
-
construction_obj = project_constructions.get(construction) or material_library.library_constructions.get(construction)
|
173 |
-
if not construction_obj or not construction_obj.layers:
|
174 |
-
logger.warning(f"Construction not found or empty for {component_name}. Using defaults.")
|
175 |
-
else:
|
176 |
-
absorptivity = getattr(construction_obj, 'absorptivity', 0.6)
|
177 |
-
emissivity = getattr(construction_obj, 'emissivity', 0.9)
|
178 |
-
logger.debug(f"Using construction for {component_name}: absorptivity={absorptivity}, emissivity={emissivity}")
|
179 |
-
|
180 |
-
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
181 |
-
fenestration = getattr(component, 'fenestration', None)
|
182 |
-
if not fenestration:
|
183 |
-
logger.warning(f"No fenestration defined for {component_name} ({component.component_type.value}). Using default SHGC=0.7, h_o={h_o}.")
|
184 |
-
shgc = 0.7
|
185 |
-
else:
|
186 |
-
fenestration_obj = project_fenestrations.get(fenestration) or material_library.library_fenestrations.get(fenestration)
|
187 |
-
if not fenestration_obj:
|
188 |
-
logger.warning(f"Fenestration not found for {component_name}. Using default SHGC=0.7.")
|
189 |
-
shgc = 0.7
|
190 |
-
else:
|
191 |
-
shgc = getattr(fenestration_obj, 'shgc', 0.7)
|
192 |
-
h_o = getattr(fenestration_obj, 'h_o', h_o)
|
193 |
-
logger.debug(f"Using fenestration for {component_name}: shgc={shgc}, h_o={h_o}")
|
194 |
-
emissivity = None # Not used for fenestration
|
195 |
-
|
196 |
-
except Exception as e:
|
197 |
-
logger.error(f"Error retrieving surface parameters for {component_name}: {str(e)}")
|
198 |
-
if component.component_type == ComponentType.ROOF:
|
199 |
-
surface_tilt = 0.0
|
200 |
-
h_o = 23.0
|
201 |
-
surface_azimuth = 0.0
|
202 |
-
elif component.component_type == ComponentType.SKYLIGHT:
|
203 |
-
surface_tilt = 0.0
|
204 |
-
h_o = 23.0
|
205 |
-
surface_azimuth = 0.0
|
206 |
-
elif component.component_type == ComponentType.FLOOR:
|
207 |
-
surface_tilt = 180.0
|
208 |
-
h_o = 17.0
|
209 |
-
surface_azimuth = 0.0
|
210 |
-
else:
|
211 |
-
surface_tilt = 90.0
|
212 |
-
h_o = 17.0
|
213 |
-
surface_azimuth = 0.0
|
214 |
-
absorptivity = 0.6 if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR] else 0.0
|
215 |
-
emissivity = 0.9 if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR] else None
|
216 |
-
|
217 |
-
logger.info(f"Final surface parameters for {component_name}: tilt={surface_tilt:.1f}, azimuth={surface_azimuth:.1f}, h_o={h_o:.1f}")
|
218 |
-
return surface_tilt, surface_azimuth, h_o, emissivity, absorptivity
|
219 |
-
|
220 |
-
@staticmethod
|
221 |
-
def calculate_solar_load(component, hourly_data: Dict, hour: int, building_orientation: float, mode: str = "none") -> float:
|
222 |
-
"""Calculate solar load in kW (cooling only) using ASHRAE-compliant solar calculations."""
|
223 |
-
if mode != "cooling":
|
224 |
-
return 0
|
225 |
-
if component.component_type == ComponentType.FLOOR:
|
226 |
-
return 0
|
227 |
-
|
228 |
-
component_name = getattr(component, 'name', 'unnamed_component')
|
229 |
-
|
230 |
-
try:
|
231 |
-
material_library = st.session_state.project_data.get("material_library", MaterialLibrary())
|
232 |
-
project_materials = st.session_state.project_data.get("materials", {}).get("project", {})
|
233 |
-
project_constructions = st.session_state.project_data.get("constructions", {}).get("project", {})
|
234 |
-
project_fenestrations = st.session_state.project_data.get("fenestrations", {}).get("project", {})
|
235 |
-
|
236 |
-
climate_data = st.session_state.project_data.get("climate_data", {})
|
237 |
-
latitude = climate_data.get("latitude", 0.0)
|
238 |
-
longitude = climate_data.get("longitude", 0.0)
|
239 |
-
timezone = climate_data.get("time_zone", 0.0)
|
240 |
-
ground_reflectivity = climate_data.get("ground_reflectivity", 0.2)
|
241 |
-
|
242 |
-
if not -90 <= latitude <= 90:
|
243 |
-
logger.warning(f"Invalid latitude {latitude} for {component_name}. Using default 0.0.")
|
244 |
-
latitude = 0.0
|
245 |
-
if not -180 <= longitude <= 180:
|
246 |
-
logger.warning(f"Invalid longitude {longitude} for {component_name}. Using default 0.0.")
|
247 |
-
longitude = 0.0
|
248 |
-
if not -12 <= timezone <= 14:
|
249 |
-
logger.warning(f"Invalid timezone {timezone} for {component_name}. Using default 0.0.")
|
250 |
-
timezone = 0.0
|
251 |
-
if not 0 <= ground_reflectivity <= 1:
|
252 |
-
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name}. Using default 0.2.")
|
253 |
-
ground_reflectivity = 0.2
|
254 |
-
|
255 |
-
required_fields = ["month", "day", "hour", "global_horizontal_radiation", "direct_normal_radiation",
|
256 |
-
"diffuse_horizontal_radiation", "dry_bulb"]
|
257 |
-
if not all(field in hourly_data for field in required_fields):
|
258 |
-
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name}: {hourly_data}")
|
259 |
-
return 0
|
260 |
-
|
261 |
-
if hourly_data["global_horizontal_radiation"] <= 0:
|
262 |
-
logger.info(f"No solar load for hour {hour} due to GHI={hourly_data['global_horizontal_radiation']} for {component_name}")
|
263 |
-
return 0
|
264 |
-
|
265 |
-
month = hourly_data["month"]
|
266 |
-
day = hourly_data["day"]
|
267 |
-
hour = hourly_data["hour"]
|
268 |
-
ghi = hourly_data["global_horizontal_radiation"]
|
269 |
-
dni = hourly_data.get("direct_normal_radiation", ghi * 0.7)
|
270 |
-
dhi = hourly_data.get("diffuse_horizontal_radiation", ghi * 0.3)
|
271 |
-
outdoor_temp = hourly_data["dry_bulb"]
|
272 |
-
|
273 |
-
if ghi < 0 or dni < 0 or dhi < 0:
|
274 |
-
logger.error(f"Negative radiation values for {month}/{day}/{hour} for {component_name}")
|
275 |
-
raise ValueError(f"Negative radiation values for {month}/{day}/{hour}")
|
276 |
-
|
277 |
-
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
278 |
-
f"dry_bulb={outdoor_temp} for {component_name}")
|
279 |
-
|
280 |
-
year = 2025
|
281 |
-
n = TFMCalculations.day_of_year(month, day, year)
|
282 |
-
EOT = TFMCalculations.equation_of_time(n)
|
283 |
-
lambda_std = 15 * timezone
|
284 |
-
standard_time = hour - 1 + 0.5
|
285 |
-
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
286 |
-
|
287 |
-
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
288 |
-
hra = 15 * (LST - 12)
|
289 |
-
phi = math.radians(latitude)
|
290 |
-
delta_rad = math.radians(delta)
|
291 |
-
hra_rad = math.radians(hra)
|
292 |
-
|
293 |
-
sin_alpha = math.sin(phi) * math.sin(delta_rad) + math.cos(phi) * math.cos(delta_rad) * math.cos(hra_rad)
|
294 |
-
alpha = math.degrees(math.asin(sin_alpha))
|
295 |
-
|
296 |
-
if abs(math.cos(math.radians(alpha))) < 0.01:
|
297 |
-
azimuth = 0
|
298 |
-
else:
|
299 |
-
sin_az = math.cos(delta_rad) * math.sin(hra_rad) / math.cos(math.radians(alpha))
|
300 |
-
cos_az = (sin_alpha * math.sin(phi) - math.sin(delta_rad)) / (math.cos(math.radians(alpha)) * math.cos(phi))
|
301 |
-
azimuth = math.degrees(math.atan2(sin_az, cos_az))
|
302 |
-
if hra > 0:
|
303 |
-
azimuth = 360 - azimuth if azimuth > 0 else -azimuth
|
304 |
-
|
305 |
-
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
306 |
-
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name}")
|
307 |
-
|
308 |
-
building_info = {"orientation_angle": building_orientation}
|
309 |
-
surface_tilt, surface_azimuth, h_o, emissivity, absorptivity = \
|
310 |
-
TFMCalculations.get_surface_parameters(
|
311 |
-
component, building_info, material_library, project_materials,
|
312 |
-
project_constructions, project_fenestrations
|
313 |
-
)
|
314 |
-
|
315 |
-
alpha_rad = math.radians(alpha)
|
316 |
-
surface_tilt_rad = math.radians(surface_tilt)
|
317 |
-
azimuth_rad = math.radians(azimuth)
|
318 |
-
surface_azimuth_rad = math.radians(surface_azimuth)
|
319 |
-
|
320 |
-
cos_theta = (math.sin(alpha_rad) * math.cos(surface_tilt_rad) +
|
321 |
-
math.cos(alpha_rad) * math.sin(surface_tilt_rad) *
|
322 |
-
math.cos(azimuth_rad - surface_azimuth_rad))
|
323 |
-
cos_theta = max(min(cos_theta, 1.0), 0.0)
|
324 |
-
|
325 |
-
logger.info(f"Component {component_name} at {month}/{day}/{hour}: "
|
326 |
-
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
327 |
-
f"cos_theta={cos_theta:.4f}")
|
328 |
-
|
329 |
-
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
330 |
-
ground_reflected = ground_reflectivity * ghi * view_factor
|
331 |
-
|
332 |
-
if cos_theta > 0:
|
333 |
-
I_t = dni * cos_theta + dhi + ground_reflected
|
334 |
-
else:
|
335 |
-
I_t = dhi + ground_reflected
|
336 |
-
|
337 |
-
solar_heat_gain = 0.0
|
338 |
-
|
339 |
-
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
340 |
-
fenestration = getattr(component, 'fenestration', None)
|
341 |
-
shgc = 0.7
|
342 |
-
if fenestration:
|
343 |
-
fenestration_obj = project_fenestrations.get(fenestration) or material_library.library_fenestrations.get(fenestration)
|
344 |
-
if fenestration_obj:
|
345 |
-
shgc = getattr(fenestration_obj, 'shgc', 0.7)
|
346 |
-
h_o = getattr(fenestration_obj, 'h_o', h_o)
|
347 |
-
else:
|
348 |
-
logger.warning(f"Fenestration not found for {component_name}. Using default SHGC=0.7.")
|
349 |
-
|
350 |
-
glazing_type = TFMCalculations.GLAZING_TYPE_MAPPING.get(fenestration, "Single Clear")
|
351 |
-
iac = getattr(component, 'shading_coefficient', 1.0)
|
352 |
-
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
353 |
-
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000
|
354 |
-
|
355 |
-
logger.info(f"Fenestration solar heat gain for {component_name} at {month}/{day}/{hour}: "
|
356 |
-
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
357 |
-
f"I_t={I_t:.2f}, iac={iac})")
|
358 |
-
|
359 |
-
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.FLOOR]:
|
360 |
-
surface_resistance = 1/h_o
|
361 |
-
solar_heat_gain = component.area * absorptivity * I_t * surface_resistance / 1000
|
362 |
-
|
363 |
-
logger.info(f"Opaque surface solar heat gain for {component_name} at {month}/{day}/{hour}: "
|
364 |
-
f"{solar_heat_gain:.4f} kW (area={component.area}, absorptivity={absorptivity:.2f}, "
|
365 |
-
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
366 |
-
|
367 |
-
return solar_heat_gain
|
368 |
-
|
369 |
-
except Exception as e:
|
370 |
-
logger.error(f"Error calculating solar load for {component_name} at hour {hour}: {str(e)}")
|
371 |
-
return 0
|
372 |
-
|
373 |
-
@staticmethod
|
374 |
-
def calculate_internal_load(internal_loads: Dict, hour: int, operation_hours: int, area: float) -> float:
|
375 |
-
"""Calculate total internal load in kW."""
|
376 |
-
total_load = 0
|
377 |
-
for group in internal_loads.get("people", []):
|
378 |
-
activity_data = group["activity_data"]
|
379 |
-
sensible = (activity_data["sensible_min_w"] + activity_data["sensible_max_w"]) / 2
|
380 |
-
latent = (activity_data["latent_min_w"] + activity_data["latent_max_w"]) / 2
|
381 |
-
load_per_person = sensible + latent
|
382 |
-
total_load += group["num_people"] * load_per_person * group.get("diversity_factor", 1.0)
|
383 |
-
for light in internal_loads.get("lighting", []):
|
384 |
-
lpd = light["lpd"]
|
385 |
-
lighting_operating_hours = light.get("operating_hours", operation_hours)
|
386 |
-
fraction = min(lighting_operating_hours, operation_hours) / operation_hours if operation_hours > 0 else 0
|
387 |
-
lighting_load = lpd * light["area"] * fraction
|
388 |
-
total_load += lighting_load
|
389 |
-
for equip in internal_loads.get("equipment", []):
|
390 |
-
equipment_load = equip["equipment_load"] * equip["area"]
|
391 |
-
total_load += equipment_load
|
392 |
-
return total_load / 1000
|
393 |
-
|
394 |
-
@staticmethod
|
395 |
-
def calculate_ventilation_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
396 |
-
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
397 |
-
if mode == "none":
|
398 |
-
return 0, 0
|
399 |
-
total_ventilation_flow = 0
|
400 |
-
num_people = sum(group["num_people"] for group in internal_loads.get("people", []))
|
401 |
-
for ventilation in internal_loads.get("ventilation", []):
|
402 |
-
space_rate = ventilation.get("design_flow_rate", 0.3) # L/s/m²
|
403 |
-
total_ventilation_flow += space_rate * ventilation["area"] / 1000 # m³/s
|
404 |
-
if not internal_loads.get("ventilation"):
|
405 |
-
total_ventilation_flow = 0.3 * area / 1000 + 2.5 * num_people / 1000 # Default rates
|
406 |
-
air_density = 1.2
|
407 |
-
specific_heat = 1000
|
408 |
-
delta_t = outdoor_temp - indoor_temp
|
409 |
-
if mode == "cooling" and delta_t <= 0:
|
410 |
-
return 0, 0
|
411 |
-
if mode == "heating" and delta_t >= 0:
|
412 |
-
return 0, 0
|
413 |
-
load = total_ventilation_flow * air_density * specific_heat * delta_t / 1000
|
414 |
-
cooling_load = load if mode == "cooling" else 0
|
415 |
-
heating_load = -load if mode == "heating" else 0
|
416 |
-
return cooling_load, heating_load
|
417 |
-
|
418 |
-
@staticmethod
|
419 |
-
def calculate_infiltration_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
420 |
-
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
421 |
-
if mode == "none":
|
422 |
-
return 0, 0
|
423 |
-
total_infiltration_flow = 0
|
424 |
-
building_height = building_info.get("building_height", 3.0)
|
425 |
-
volume = area * building_height
|
426 |
-
air_density = 1.2
|
427 |
-
specific_heat = 1000
|
428 |
-
delta_t = outdoor_temp - indoor_temp
|
429 |
-
if mode == "cooling" and delta_t <= 0:
|
430 |
-
return 0, 0
|
431 |
-
if mode == "heating" and delta_t >= 0:
|
432 |
-
return 0, 0
|
433 |
-
for infiltration in internal_loads.get("infiltration", []):
|
434 |
-
method = infiltration.get("system_type", "AirChanges/Hour")
|
435 |
-
if method == "AirChanges/Hour":
|
436 |
-
ach = infiltration.get("design_flow_rate", 0.5)
|
437 |
-
total_infiltration_flow += ach * volume / 3600
|
438 |
-
elif method == "Crack Flow":
|
439 |
-
ela = infiltration.get("effective_air_leakage_area", 0.0001) / 10000 # cm² to m²
|
440 |
-
wind_speed = 4.0
|
441 |
-
total_infiltration_flow += ela * infiltration["area"] * wind_speed / 2
|
442 |
-
else: # Flow Equation
|
443 |
-
c = infiltration.get("flow_coefficient", 0.0001)
|
444 |
-
n = infiltration.get("pressure_exponent", 0.65)
|
445 |
-
delta_t_abs = abs(delta_t)
|
446 |
-
total_infiltration_flow += c * (delta_t_abs ** n) * infiltration["area"] / 3600
|
447 |
-
if not internal_loads.get("infiltration"):
|
448 |
-
total_infiltration_flow = 0.5 * volume / 3600 # Default ACH
|
449 |
-
load = total_infiltration_flow * air_density * specific_heat * delta_t / 1000
|
450 |
-
cooling_load = load if mode == "cooling" else 0
|
451 |
-
heating_load = -load if mode == "heating" else 0
|
452 |
-
return cooling_load, heating_load
|
453 |
-
|
454 |
-
@staticmethod
|
455 |
-
def get_adaptive_comfort_temp(outdoor_temp: float) -> float:
|
456 |
-
"""Calculate adaptive comfort temperature per ASHRAE 55."""
|
457 |
-
if 10 <= outdoor_temp <= 33.5:
|
458 |
-
return 0.31 * outdoor_temp + 17.8
|
459 |
-
return 24.0
|
460 |
-
|
461 |
-
@staticmethod
|
462 |
-
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
463 |
-
"""Filter hourly data based on simulation period, ignoring year."""
|
464 |
-
if sim_period.get("type") == "Full Year":
|
465 |
-
return hourly_data
|
466 |
-
filtered_data = []
|
467 |
-
if sim_period.get("type") == "From-to":
|
468 |
-
start_month = sim_period["start_date"].month
|
469 |
-
start_day = sim_period["start_date"].day
|
470 |
-
end_month = sim_period["end_date"].month
|
471 |
-
end_day = sim_period["end_date"].day
|
472 |
-
for data in hourly_data:
|
473 |
-
month, day = data["month"], data["day"]
|
474 |
-
if (month > start_month or (month == start_month and day >= start_day)) and \
|
475 |
-
(month < end_month or (month == end_month and day <= end_day)):
|
476 |
-
filtered_data.append(data)
|
477 |
-
elif sim_period.get("type") in ["HDD", "CDD"]:
|
478 |
-
base_temp = sim_period.get("base_temp", 18.3 if sim_period["type"] == "HDD" else 23.9)
|
479 |
-
for data in hourly_data:
|
480 |
-
temp = data["dry_bulb"]
|
481 |
-
if (sim_period["type"] == "HDD" and temp < base_temp) or (sim_period["type"] == "CDD" and temp > base_temp):
|
482 |
-
filtered_data.append(data)
|
483 |
-
return filtered_data
|
484 |
-
|
485 |
-
@staticmethod
|
486 |
-
def get_indoor_conditions(indoor_conditions: Dict, hour: int, outdoor_temp: float, building_info: Dict) -> Dict:
|
487 |
-
"""Determine indoor conditions based on user settings and building_info."""
|
488 |
-
winter_temp = building_info.get("winter_indoor_design_temp", 20.0)
|
489 |
-
summer_temp = building_info.get("summer_indoor_design_temp", 24.0)
|
490 |
-
winter_rh = building_info.get("winter_indoor_design_rh", 50.0)
|
491 |
-
summer_rh = building_info.get("summer_indoor_design_rh", 50.0)
|
492 |
-
|
493 |
-
if indoor_conditions.get("type") == "Fixed":
|
494 |
-
mode = "none" if abs(outdoor_temp - winter_temp) < 0.01 else "cooling" if outdoor_temp > summer_temp else "heating"
|
495 |
-
if mode == "cooling":
|
496 |
-
return {"temperature": summer_temp, "rh": summer_rh}
|
497 |
-
elif mode == "heating":
|
498 |
-
return {"temperature": winter_temp, "rh": winter_rh}
|
499 |
-
else:
|
500 |
-
return {"temperature": (winter_temp + summer_temp) / 2, "rh": (winter_rh + summer_rh) / 2}
|
501 |
-
elif indoor_conditions.get("type") == "Time-varying":
|
502 |
-
schedule = indoor_conditions.get("schedule", [])
|
503 |
-
if schedule:
|
504 |
-
hour_idx = hour % 24
|
505 |
-
for entry in schedule:
|
506 |
-
if entry["hour"] == hour_idx:
|
507 |
-
return {"temperature": entry["temperature"], "rh": entry["rh"]}
|
508 |
-
return {"temperature": (winter_temp + summer_temp) / 2, "rh": (winter_rh + summer_rh) / 2}
|
509 |
-
else: # Adaptive
|
510 |
-
return {"temperature": TFMCalculations.get_adaptive_comfort_temp(outdoor_temp), "rh": (winter_rh + summer_rh) / 2}
|
511 |
-
|
512 |
-
@staticmethod
|
513 |
-
def calculate_tfm_loads(components: Dict, hourly_data: List[Dict], indoor_conditions: Dict, internal_loads: Dict, building_info: Dict, sim_period: Dict, hvac_settings: Dict) -> List[Dict]:
|
514 |
-
"""Calculate TFM loads for heating and cooling with user-defined filters and temperature threshold."""
|
515 |
-
filtered_data = TFMCalculations.filter_hourly_data(hourly_data, sim_period, building_info)
|
516 |
-
temp_loads = []
|
517 |
-
building_orientation = building_info.get("orientation_angle", 0.0)
|
518 |
-
operation_hours = building_info.get("operation_hours", 8)
|
519 |
-
operating_periods = [{"start": 8, "end": 8 + operation_hours}] # Convert float to dict
|
520 |
-
area = building_info.get("floor_area", 100.0)
|
521 |
-
|
522 |
-
if "material_library" not in st.session_state.project_data:
|
523 |
-
st.session_state.project_data["material_library"] = MaterialLibrary()
|
524 |
-
logger.info("Initialized MaterialLibrary in session_state for solar calculations")
|
525 |
-
|
526 |
-
for comp_list in components.values():
|
527 |
-
for comp in comp_list:
|
528 |
-
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
529 |
-
|
530 |
-
for hour_data in filtered_data:
|
531 |
-
hour = hour_data["hour"]
|
532 |
-
outdoor_temp = hour_data["dry_bulb"]
|
533 |
-
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp, building_info)
|
534 |
-
indoor_temp = indoor_cond["temperature"]
|
535 |
-
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
536 |
-
is_operating = False
|
537 |
-
for period in operating_periods:
|
538 |
-
start_hour = period.get("start", 8)
|
539 |
-
end_hour = period.get("end", 18)
|
540 |
-
if start_hour <= hour % 24 <= end_hour:
|
541 |
-
is_operating = True
|
542 |
-
break
|
543 |
-
mode = "none" if abs(outdoor_temp - building_info.get("winter_indoor_design_temp", 20.0)) < 0.01 else \
|
544 |
-
"cooling" if outdoor_temp > building_info.get("summer_indoor_design_temp", 24.0) else "heating"
|
545 |
-
if is_operating and mode == "cooling":
|
546 |
-
for comp_list in components.values():
|
547 |
-
for comp in comp_list:
|
548 |
-
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
549 |
-
conduction_cooling += cool_load
|
550 |
-
solar += TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
551 |
-
logger.info(f"Component {comp.name} solar load: {solar:.3f} kW")
|
552 |
-
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, operation_hours, area)
|
553 |
-
ventilation_cooling, _ = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
554 |
-
infiltration_cooling, _ = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
555 |
-
elif is_operating and mode == "heating":
|
556 |
-
for comp_list in components.values():
|
557 |
-
for comp in comp_list:
|
558 |
-
_, heat_load = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="heating")
|
559 |
-
conduction_heating += heat_load
|
560 |
-
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, operation_hours, area)
|
561 |
-
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
562 |
-
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
563 |
-
else:
|
564 |
-
internal = 0
|
565 |
-
|
566 |
-
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
567 |
-
|
568 |
-
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
569 |
-
total_heating = max(conduction_heating + ventilation_heating + infiltration_heating - internal, 0)
|
570 |
-
if mode == "cooling":
|
571 |
-
total_heating = 0
|
572 |
-
elif mode == "heating":
|
573 |
-
total_cooling = 0
|
574 |
-
temp_loads.append({
|
575 |
-
"hour": hour,
|
576 |
-
"month": hour_data["month"],
|
577 |
-
"day": hour_data["day"],
|
578 |
-
"conduction_cooling": conduction_cooling,
|
579 |
-
"conduction_heating": conduction_heating,
|
580 |
-
"solar": solar,
|
581 |
-
"internal": internal,
|
582 |
-
"ventilation_cooling": ventilation_cooling,
|
583 |
-
"ventilation_heating": ventilation_heating,
|
584 |
-
"infiltration_cooling": infiltration_cooling,
|
585 |
-
"infiltration_heating": infiltration_heating,
|
586 |
-
"total_cooling": total_cooling,
|
587 |
-
"total_heating": total_heating
|
588 |
-
})
|
589 |
-
|
590 |
-
loads_by_day = defaultdict(list)
|
591 |
-
for load in temp_loads:
|
592 |
-
day_key = (load["month"], load["day"])
|
593 |
-
loads_by_day[day_key].append(load)
|
594 |
-
final_loads = []
|
595 |
-
for day_key, day_loads in loads_by_day.items():
|
596 |
-
cooling_hours = sum(1 for load in day_loads if load["total_cooling"] > 0)
|
597 |
-
heating_hours = sum(1 for load in day_loads if load["total_heating"] > 0)
|
598 |
-
for load in day_loads:
|
599 |
-
if cooling_hours > heating_hours:
|
600 |
-
load["total_heating"] = 0
|
601 |
-
elif heating_hours > cooling_hours:
|
602 |
-
load["total_cooling"] = 0
|
603 |
-
else:
|
604 |
-
load["total_cooling"] = 0
|
605 |
-
load["total_heating"] = 0
|
606 |
-
final_loads.append(load)
|
607 |
-
return final_loads
|
608 |
|
609 |
-
def
|
610 |
-
"""
|
611 |
-
st.header("HVAC
|
612 |
-
|
613 |
-
#
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
#
|
625 |
-
|
626 |
-
"
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
sim_period=sim_period,
|
645 |
-
hvac_settings=hvac_settings
|
646 |
-
)
|
647 |
-
|
648 |
-
# Update project_data
|
649 |
-
project_data["hvac_loads"]["cooling"]["hourly"] = [load for load in loads if load["total_cooling"] > 0]
|
650 |
-
project_data["hvac_loads"]["heating"]["hourly"] = [load for load in loads if load["total_heating"] > 0]
|
651 |
-
project_data["hvac_loads"]["cooling"]["peak"] = max((load["total_cooling"] for load in loads), default=0)
|
652 |
-
project_data["hvac_loads"]["heating"]["peak"] = max((load["total_heating"] for load in loads), default=0)
|
653 |
-
|
654 |
-
# Display results
|
655 |
-
st.subheader("Cooling Loads (kW)")
|
656 |
-
cooling_df = pd.DataFrame(project_data["hvac_loads"]["cooling"]["hourly"])
|
657 |
-
if not cooling_df.empty:
|
658 |
-
st.dataframe(cooling_df[["month", "day", "hour", "total_cooling", "conduction_cooling", "solar", "internal", "ventilation_cooling", "infiltration_cooling"]])
|
659 |
-
|
660 |
-
st.subheader("Heating Loads (kW)")
|
661 |
-
heating_df = pd.DataFrame(project_data["hvac_loads"]["heating"]["hourly"])
|
662 |
-
if not heating_df.empty:
|
663 |
-
st.dataframe(heating_df[["month", "day", "hour", "total_heating", "conduction_heating", "internal", "ventilation_heating", "infiltration_heating"]])
|
664 |
-
|
665 |
-
st.write(f"Peak Cooling Load: {project_data['hvac_loads']['cooling']['peak']:.2f} kW")
|
666 |
-
st.write(f"Peak Heating vanguard: {project_data['hvac_loads']['heating']['peak']:.2f} kW")
|
667 |
-
|
668 |
-
except Exception as e:
|
669 |
-
st.error(f"Error calculating HVAC loads: {str(e)}")
|
670 |
-
logger.exception("HVAC load calculation error")
|
671 |
|
672 |
if __name__ == "__main__":
|
673 |
-
|
|
|
8 |
Developed by: Dr Majed Abuseif, Deakin University
|
9 |
© 2025
|
10 |
"""
|
|
|
|
|
|
|
|
|
|
|
11 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def render_ui():
|
14 |
+
"""Render the Streamlit UI for location information, simulation periods, and action buttons."""
|
15 |
+
st.header("HVAC Load Calculator")
|
16 |
+
|
17 |
+
# Location Information
|
18 |
+
with st.expander("Location Information", expanded=True):
|
19 |
+
col1, col2 = st.columns(2)
|
20 |
+
with col1:
|
21 |
+
st.text_input("City", key="city")
|
22 |
+
st.number_input("Latitude (°)", min_value=-90.0, max_value=90.0, value=0.0, step=0.1, key="latitude")
|
23 |
+
st.number_input("Longitude (°)", min_value=-180.0, max_value=180.0, value=0.0, step=0.1, key="longitude")
|
24 |
+
with col2:
|
25 |
+
st.number_input("Time Zone", min_value=-12.0, max_value=14.0, value=0.0, step=0.5, key="time_zone")
|
26 |
+
st.number_input("Ground Reflectivity", min_value=0.0, max_value=1.0, value=0.2, step=0.01, key="ground_reflectivity")
|
27 |
+
|
28 |
+
# Simulation Period
|
29 |
+
with st.expander("Simulation Period", expanded=True):
|
30 |
+
sim_type = st.selectbox("Simulation Type", ["Full Year", "From-to", "HDD", "CDD"], key="sim_type")
|
31 |
+
if sim_type == "From-to":
|
32 |
+
col1, col2 = st.columns(2)
|
33 |
+
with col1:
|
34 |
+
st.date_input("Start Date", key="start_date")
|
35 |
+
with col2:
|
36 |
+
st.date_input("End Date", key="end_date")
|
37 |
+
elif sim_type in ["HDD", "CDD"]:
|
38 |
+
st.number_input("Base Temperature (°C)", value=18.3 if sim_type == "HDD" else 23.9, key="base_temp")
|
39 |
+
|
40 |
+
# Action Buttons
|
41 |
+
col1, col2, col3 = st.columns(3)
|
42 |
+
with col1:
|
43 |
+
st.button("Calculate", key="calculate_button")
|
44 |
+
with col2:
|
45 |
+
st.button("Save", key="save_button")
|
46 |
+
with col3:
|
47 |
+
st.button("Reset", key="reset_button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
+
render_ui()
|