Spaces:
Sleeping
Sleeping
Update app/hvac_loads.py
Browse files- app/hvac_loads.py +805 -646
app/hvac_loads.py
CHANGED
@@ -9,675 +9,834 @@ Developed by: Dr Majed Abuseif, Deakin University
|
|
9 |
© 2025
|
10 |
"""
|
11 |
|
12 |
-
import streamlit as st
|
13 |
-
import pandas as pd
|
14 |
import numpy as np
|
15 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
import logging
|
17 |
-
import
|
18 |
-
|
19 |
-
import plotly.express as px
|
20 |
-
from typing import Dict, List, Any, Optional, Tuple, Union
|
21 |
|
22 |
# Configure logging
|
23 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
with col2:
|
78 |
-
if st.button("Continue to Building Energy", key="continue_to_building_energy"):
|
79 |
-
st.session_state.current_page = "Building Energy"
|
80 |
-
st.rerun()
|
81 |
-
|
82 |
-
def check_prerequisites() -> bool:
|
83 |
-
"""Check if all prerequisite data is available in session state."""
|
84 |
-
required_keys = [
|
85 |
-
"building_info",
|
86 |
-
"climate_data",
|
87 |
-
"materials",
|
88 |
-
"constructions",
|
89 |
-
"components",
|
90 |
-
"internal_loads"
|
91 |
-
]
|
92 |
-
|
93 |
-
for key in required_keys:
|
94 |
-
if key not in st.session_state.project_data or not st.session_state.project_data[key]:
|
95 |
-
logger.warning(f"Prerequisite check failed: Missing data for '{key}'.")
|
96 |
-
return False
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
logger.
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
fenestrations = get_available_fenestrations()
|
127 |
-
components = st.session_state.project_data["components"]
|
128 |
-
internal_loads = st.session_state.project_data["internal_loads"]
|
129 |
-
|
130 |
-
# Get design conditions
|
131 |
-
design_conditions = climate_data["design_conditions"]
|
132 |
-
hourly_data = pd.DataFrame(climate_data["hourly_data"])
|
133 |
-
|
134 |
-
# --- Solar Calculations --- #
|
135 |
-
logger.info("Calculating solar geometry...")
|
136 |
-
latitude = climate_data["location"]["latitude"]
|
137 |
-
longitude = climate_data["location"]["longitude"]
|
138 |
-
timezone = climate_data["location"]["timezone"]
|
139 |
-
building_orientation_angle = building_info["orientation_angle"]
|
140 |
-
|
141 |
-
# Calculate solar angles for every hour of the year
|
142 |
-
solar_angles = calculate_solar_angles(latitude, longitude, timezone, hourly_data.index)
|
143 |
-
hourly_data = pd.concat([hourly_data, solar_angles], axis=1)
|
144 |
-
|
145 |
-
# --- Heat Transfer Calculations --- #
|
146 |
-
logger.info("Calculating heat transfer through components...")
|
147 |
-
cooling_loads = {
|
148 |
-
"opaque_conduction": np.zeros(8760),
|
149 |
-
"fenestration_conduction": np.zeros(8760),
|
150 |
-
"fenestration_solar": np.zeros(8760),
|
151 |
-
"infiltration": np.zeros(8760),
|
152 |
-
"ventilation": np.zeros(8760),
|
153 |
-
"internal_sensible": np.zeros(8760),
|
154 |
-
"internal_latent": np.zeros(8760)
|
155 |
-
}
|
156 |
-
heating_loads = {
|
157 |
-
"opaque_conduction": np.zeros(8760),
|
158 |
-
"fenestration_conduction": np.zeros(8760),
|
159 |
-
"infiltration": np.zeros(8760),
|
160 |
-
"ventilation": np.zeros(8760)
|
161 |
-
}
|
162 |
-
|
163 |
-
# 1. Opaque Surfaces (Walls, Roofs, Floors)
|
164 |
-
for comp_type in ["walls", "roofs", "floors"]:
|
165 |
-
for comp in components.get(comp_type, []):
|
166 |
-
logger.debug(f"Calculating loads for {comp_type}: {comp['name']}")
|
167 |
-
construction = constructions[comp['construction']]
|
168 |
-
u_value = construction['u_value']
|
169 |
-
area = comp['area']
|
170 |
-
tilt = comp['tilt']
|
171 |
-
orientation = comp['orientation']
|
172 |
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
# Calculate
|
191 |
-
|
192 |
-
|
|
|
193 |
|
194 |
-
|
195 |
-
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
u_value = fenestration['u_value']
|
206 |
-
shgc = fenestration['shgc']
|
207 |
-
area = comp['area']
|
208 |
-
tilt = comp['tilt']
|
209 |
-
orientation = comp['orientation']
|
210 |
|
211 |
-
# Calculate
|
212 |
-
|
213 |
|
214 |
-
# Calculate incident
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
hourly_data["solar_azimuth"],
|
220 |
-
tilt,
|
221 |
-
surface_azimuth
|
222 |
-
)
|
223 |
|
224 |
-
# Calculate
|
225 |
-
|
226 |
-
delta_t_heating = design_conditions["heating_indoor_temp"] - hourly_data["Dry Bulb Temperature"]
|
227 |
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
)
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
"
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
return pd.DataFrame({
|
392 |
-
"solar_altitude": solar_altitude_deg,
|
393 |
-
"solar_azimuth": solar_azimuth_deg
|
394 |
-
}, index=index)
|
395 |
-
|
396 |
-
def calculate_surface_azimuth(orientation: str, building_orientation_angle: float) -> float:
|
397 |
-
"""
|
398 |
-
Calculate the actual surface azimuth based on orientation label and building rotation.
|
399 |
-
Azimuth: 0=N, 90=E, 180=S, 270=W
|
400 |
-
|
401 |
-
Args:
|
402 |
-
orientation: Orientation label (e.g., "A (North)", "B (South)")
|
403 |
-
building_orientation_angle: Building rotation angle from North (degrees, positive East)
|
404 |
-
|
405 |
-
Returns:
|
406 |
-
Surface azimuth in degrees.
|
407 |
-
"""
|
408 |
-
base_azimuth = {
|
409 |
-
"A (North)": 0.0,
|
410 |
-
"B (South)": 180.0,
|
411 |
-
"C (East)": 90.0,
|
412 |
-
"D (West)": 270.0,
|
413 |
-
"Horizontal": 0.0 # Azimuth doesn't matter for horizontal
|
414 |
-
}.get(orientation, 0.0)
|
415 |
-
|
416 |
-
# Adjust for building rotation
|
417 |
-
surface_azimuth = (base_azimuth + building_orientation_angle) % 360
|
418 |
-
return surface_azimuth
|
419 |
-
|
420 |
-
def calculate_incident_solar(dnr: pd.Series, dhr: pd.Series, solar_altitude: pd.Series, solar_azimuth: pd.Series, tilt: float, surface_azimuth: float) -> pd.Series:
|
421 |
-
"""
|
422 |
-
Calculate total incident solar radiation on a tilted surface.
|
423 |
-
Uses Perez model for diffuse radiation is simplified here.
|
424 |
-
|
425 |
-
Args:
|
426 |
-
dnr: Direct Normal Radiation (W/m²)
|
427 |
-
dhr: Diffuse Horizontal Radiation (W/m��)
|
428 |
-
solar_altitude: Solar altitude angle (degrees)
|
429 |
-
solar_azimuth: Solar azimuth angle (degrees, 0=N, positive E)
|
430 |
-
tilt: Surface tilt angle from horizontal (degrees)
|
431 |
-
surface_azimuth: Surface azimuth angle (degrees, 0=N, positive E)
|
432 |
-
|
433 |
-
Returns:
|
434 |
-
Total incident solar radiation on the surface (W/m²).
|
435 |
-
"""
|
436 |
-
# Convert angles to radians
|
437 |
-
alt_rad = np.radians(solar_altitude)
|
438 |
-
az_rad = np.radians(solar_azimuth)
|
439 |
-
tilt_rad = np.radians(tilt)
|
440 |
-
surf_az_rad = np.radians(surface_azimuth)
|
441 |
-
|
442 |
-
# Angle of Incidence (theta)
|
443 |
-
cos_theta = np.cos(alt_rad) * np.sin(tilt_rad) * np.cos(az_rad - surf_az_rad) + \
|
444 |
-
np.sin(alt_rad) * np.cos(tilt_rad)
|
445 |
-
cos_theta = np.maximum(0, cos_theta) # Radiation only incident if cos_theta > 0
|
446 |
-
|
447 |
-
# Direct radiation component on tilted surface
|
448 |
-
direct_tilted = dnr * cos_theta
|
449 |
-
|
450 |
-
# Diffuse radiation component (simplified isotropic sky model)
|
451 |
-
# TODO: Implement Perez model or Hay-Davies model for better accuracy
|
452 |
-
sky_diffuse_tilted = dhr * (1 + np.cos(tilt_rad)) / 2
|
453 |
-
|
454 |
-
# Ground reflected component (simplified)
|
455 |
-
albedo = 0.2 # Typical ground reflectance
|
456 |
-
ground_reflected_tilted = (dnr * np.sin(alt_rad) + dhr) * albedo * (1 - np.cos(tilt_rad)) / 2
|
457 |
-
|
458 |
-
# Total incident solar radiation
|
459 |
-
total_incident = direct_tilted + sky_diffuse_tilted + ground_reflected_tilted
|
460 |
-
return total_incident
|
461 |
-
|
462 |
-
def calculate_sol_air_temperature(t_oa: pd.Series, dnr: pd.Series, dhr: pd.Series, solar_altitude: pd.Series, solar_azimuth: pd.Series, tilt: float, surface_azimuth: float, absorptivity: float, emissivity: float, h_o: float) -> pd.Series:
|
463 |
-
"""
|
464 |
-
Calculate Sol-Air Temperature.
|
465 |
-
|
466 |
-
Args:
|
467 |
-
t_oa: Outdoor air temperature (°C)
|
468 |
-
dnr, dhr, solar_altitude, solar_azimuth: Solar data
|
469 |
-
tilt, surface_azimuth: Surface orientation
|
470 |
-
absorptivity: Surface solar absorptivity
|
471 |
-
emissivity: Surface thermal emissivity
|
472 |
-
h_o: Outside surface heat transfer coefficient (W/m²·K)
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
# Calculate sky temperature (simplified from Berdahl & Martin)
|
481 |
-
t_sky = t_oa * (SKY_TEMP_FACTOR * hourly_data["Dew Point Temperature"]**0.25)**0.25 # Approximation
|
482 |
-
|
483 |
-
# Longwave radiation exchange term
|
484 |
-
delta_r = STEFAN_BOLTZMANN * emissivity * ((t_oa + 273.15)**4 - (t_sky + 273.15)**4) / h_o
|
485 |
-
|
486 |
-
# Sol-air temperature
|
487 |
-
t_sol_air = t_oa + (absorptivity * i_total / h_o) - delta_r
|
488 |
-
return t_sol_air
|
489 |
-
|
490 |
-
def calculate_hourly_internal_loads(internal_loads_data: Dict[str, List[Dict[str, Any]]]) -> Tuple[np.ndarray, np.ndarray]:
|
491 |
-
"""
|
492 |
-
Calculate total hourly sensible and latent internal loads.
|
493 |
-
|
494 |
-
Args:
|
495 |
-
internal_loads_data: Dictionary containing lists of loads for each type.
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
#
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
|
|
|
|
|
|
|
|
530 |
|
531 |
-
#
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
fig_heating = go.Figure()
|
579 |
-
fig_heating.add_trace(go.Scatter(x=hourly_df["Hour"], y=hourly_df["Heating"], name="Heating Load", line=dict(color='red')))
|
580 |
-
fig_heating.update_layout(title="Hourly Heating Load Profile", xaxis_title="Hour of Year", yaxis_title="Load (W)", height=400)
|
581 |
-
st.plotly_chart(fig_heating, use_container_width=True)
|
582 |
-
|
583 |
-
st.subheader("Load Components at Peak Cooling Hour")
|
584 |
-
peak_hour = results["peak_cooling_total_hour"]
|
585 |
-
|
586 |
-
cooling_components = results["cooling_load_components"]
|
587 |
-
peak_cooling_data = {
|
588 |
-
"Component": list(cooling_components.keys()),
|
589 |
-
"Load (W)": [cooling_components[k][peak_hour] for k in cooling_components]
|
590 |
-
}
|
591 |
-
peak_cooling_df = pd.DataFrame(peak_cooling_data)
|
592 |
-
peak_cooling_df = peak_cooling_df[peak_cooling_df["Load (W)"] > 0] # Show only positive contributions
|
593 |
-
|
594 |
-
fig_peak_cooling = px.pie(
|
595 |
-
peak_cooling_df,
|
596 |
-
values="Load (W)",
|
597 |
-
names="Component",
|
598 |
-
title=f"Cooling Load Breakdown at Peak Hour ({peak_hour})"
|
599 |
-
)
|
600 |
-
st.plotly_chart(fig_peak_cooling, use_container_width=True)
|
601 |
-
|
602 |
-
st.subheader("Load Components at Peak Heating Hour")
|
603 |
-
peak_hour_heating = results["peak_heating_hour"]
|
604 |
-
|
605 |
-
heating_components = results["heating_load_components"]
|
606 |
-
internal_gains_at_peak = results["cooling_load_components"]["internal_sensible"][peak_hour_heating]
|
607 |
-
|
608 |
-
peak_heating_data = {
|
609 |
-
"Component": list(heating_components.keys()) + ["Internal Gains Offset"],
|
610 |
-
"Load (W)": [heating_components[k][peak_hour_heating] for k in heating_components] + [-internal_gains_at_peak] # Show gains as negative
|
611 |
-
}
|
612 |
-
peak_heating_df = pd.DataFrame(peak_heating_data)
|
613 |
-
peak_heating_df = peak_heating_df[peak_heating_df["Load (W)"] != 0] # Show only non-zero contributions
|
614 |
-
|
615 |
-
fig_peak_heating = px.pie(
|
616 |
-
peak_heating_df,
|
617 |
-
values="Load (W)",
|
618 |
-
names="Component",
|
619 |
-
title=f"Heating Load Breakdown at Peak Hour ({peak_hour_heating})"
|
620 |
-
)
|
621 |
-
st.plotly_chart(fig_peak_heating, use_container_width=True)
|
622 |
-
|
623 |
-
# Helper functions to get data (assuming they exist in other modules or session state)
|
624 |
-
def get_available_materials() -> Dict[str, Any]:
|
625 |
-
# Placeholder - should retrieve from materials_library state
|
626 |
-
mats = {}
|
627 |
-
if "materials" in st.session_state.project_data:
|
628 |
-
mats.update(st.session_state.project_data["materials"].get("library", {}))
|
629 |
-
mats.update(st.session_state.project_data["materials"].get("project", {}))
|
630 |
-
return mats
|
631 |
-
|
632 |
-
def get_available_constructions() -> Dict[str, Any]:
|
633 |
-
# Placeholder - should retrieve from construction state
|
634 |
-
consts = {}
|
635 |
-
if "constructions" in st.session_state.project_data:
|
636 |
-
consts.update(st.session_state.project_data["constructions"].get("library", {}))
|
637 |
-
consts.update(st.session_state.project_data["constructions"].get("project", {}))
|
638 |
-
return consts
|
639 |
-
|
640 |
-
def get_available_fenestrations() -> Dict[str, Any]:
|
641 |
-
# Placeholder - should retrieve from materials_library state
|
642 |
-
fens = {}
|
643 |
-
if "fenestrations" in st.session_state.project_data:
|
644 |
-
fens.update(st.session_state.project_data["fenestrations"].get("library", {}))
|
645 |
-
fens.update(st.session_state.project_data["fenestrations"].get("project", {}))
|
646 |
-
return fens
|
647 |
-
|
648 |
-
def display_hvac_loads_help():
|
649 |
-
"""
|
650 |
-
Display help information for the HVAC loads page.
|
651 |
-
"""
|
652 |
-
st.markdown("""
|
653 |
-
### HVAC Loads Help
|
654 |
-
|
655 |
-
This section calculates the building's heating and cooling loads based on the information provided in the previous steps.
|
656 |
-
|
657 |
-
**Calculation Process:**
|
658 |
-
|
659 |
-
1. **Heat Transfer**: Calculates heat gains and losses through the building envelope (walls, roofs, floors, windows, doors, skylights) considering conduction and solar radiation.
|
660 |
-
2. **Infiltration & Ventilation**: Calculates loads due to air exchange with the outside.
|
661 |
-
3. **Internal Loads**: Incorporates heat gains from occupants, lighting, and equipment.
|
662 |
-
4. **Summation**: Combines all heat gains and losses to determine the net hourly cooling and heating loads.
|
663 |
-
|
664 |
-
**Results:**
|
665 |
-
|
666 |
-
* **Peak Loads**: Shows the maximum calculated cooling and heating loads required to size HVAC equipment.
|
667 |
-
* **Hourly Profiles**: Displays graphs of the calculated loads for every hour of the year.
|
668 |
-
* **Load Components**: Shows the breakdown of loads by source (e.g., conduction, solar, internal) at the peak hours.
|
669 |
-
|
670 |
-
**Workflow:**
|
671 |
-
|
672 |
-
1. Ensure all previous sections (Building Info, Climate, Materials, Construction, Components, Internal Loads) are complete and accurate.
|
673 |
-
2. Click the "Calculate HVAC Loads" button.
|
674 |
-
3. Review the peak load summary and hourly profiles.
|
675 |
-
4. Analyze the load component breakdowns to understand the main drivers of heating and cooling needs.
|
676 |
-
5. Continue to the Building Energy section to simulate energy consumption based on these loads.
|
677 |
-
|
678 |
-
**Important:**
|
679 |
-
|
680 |
-
* The accuracy of these calculations depends heavily on the quality of the input data.
|
681 |
-
* Calculations are based on the ASHRAE methodology.
|
682 |
-
* Review the results carefully before proceeding.
|
683 |
-
""")
|
|
|
9 |
© 2025
|
10 |
"""
|
11 |
|
|
|
|
|
12 |
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from typing import Dict, List, Optional, NamedTuple, Any, Tuple
|
15 |
+
from enum import Enum
|
16 |
+
import streamlit as st
|
17 |
+
from data.material_library import Construction, GlazingMaterial, DoorMaterial, Material, MaterialLibrary
|
18 |
+
from data.internal_loads import PEOPLE_ACTIVITY_LEVELS, DIVERSITY_FACTORS, LIGHTING_FIXTURE_TYPES, EQUIPMENT_HEAT_GAINS, VENTILATION_RATES, INFILTRATION_SETTINGS
|
19 |
+
from datetime import datetime
|
20 |
+
from collections import defaultdict
|
21 |
import logging
|
22 |
+
import math
|
23 |
+
from utils.ctf_calculations import CTFCalculator, ComponentType, CTFCoefficients
|
|
|
|
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
+
class TFMCalculations:
|
30 |
+
# Solar calculation constants (from solar.py)
|
31 |
+
SHGC_COEFFICIENTS = {
|
32 |
+
"Single Clear": [0.1, -0.0, 0.0, -0.0, 0.0, 0.87],
|
33 |
+
"Single Tinted": [0.12, -0.0, 0.0, -0.0, 0.8, -0.0],
|
34 |
+
"Double Clear": [0.14, -0.0, 0.0, -0.0, 0.78, -0.0],
|
35 |
+
"Double Low-E": [0.2, -0.0, 0.0, 0.7, 0.0, -0.0],
|
36 |
+
"Double Tinted": [0.15, -0.0, 0.0, -0.0, 0.65, -0.0],
|
37 |
+
"Double Low-E with Argon": [0.18, -0.0, 0.0, 0.68, 0.0, -0.0],
|
38 |
+
"Single Low-E Reflective": [0.22, -0.0, 0.0, 0.6, 0.0, -0.0],
|
39 |
+
"Double Reflective": [0.24, -0.0, 0.0, 0.58, 0.0, -0.0],
|
40 |
+
"Electrochromic": [0.25, -0.0, 0.5, -0.0, 0.0, -0.0]
|
41 |
+
}
|
42 |
+
|
43 |
+
GLAZING_TYPE_MAPPING = {
|
44 |
+
"Single Clear 3mm": "Single Clear",
|
45 |
+
"Single Clear 6mm": "Single Clear",
|
46 |
+
"Single Tinted 6mm": "Single Tinted",
|
47 |
+
"Double Clear 6mm/13mm Air": "Double Clear",
|
48 |
+
"Double Low-E 6mm/13mm Air": "Double Low-E",
|
49 |
+
"Double Tinted 6mm/13mm Air": "Double Tinted",
|
50 |
+
"Double Low-E 6mm/13mm Argon": "Double Low-E with Argon",
|
51 |
+
"Single Low-E Reflective 6mm": "Single Low-E Reflective",
|
52 |
+
"Double Reflective 6mm/13mm Air": "Double Reflective",
|
53 |
+
"Electrochromic 6mm/13mm Air": "Electrochromic"
|
54 |
+
}
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def calculate_conduction_load(component, outdoor_temp: float, indoor_temp: float, hour: int, mode: str = "none") -> tuple[float, float]:
|
58 |
+
"""Calculate conduction load for heating and cooling in kW based on mode."""
|
59 |
+
if mode == "none":
|
60 |
+
return 0, 0
|
61 |
+
delta_t = outdoor_temp - indoor_temp
|
62 |
+
if mode == "cooling" and delta_t <= 0:
|
63 |
+
return 0, 0
|
64 |
+
if mode == "heating" and delta_t >= 0:
|
65 |
+
return 0, 0
|
66 |
+
|
67 |
+
# Get CTF coefficients using CTFCalculator
|
68 |
+
ctf = CTFCalculator.calculate_ctf_coefficients(component)
|
69 |
+
|
70 |
+
# Initialize history terms (simplified: assume steady-state history for demonstration)
|
71 |
+
# In practice, maintain temperature and flux histories
|
72 |
+
load = component.u_value * component.area * delta_t
|
73 |
+
for i in range(len(ctf.Y)):
|
74 |
+
load += component.area * ctf.Y[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
75 |
+
load -= component.area * ctf.Z[i] * (outdoor_temp - indoor_temp) * np.exp(-i * 3600 / 3600)
|
76 |
+
# Note: F terms require flux history, omitted here for simplicity
|
77 |
+
cooling_load = load / 1000 if mode == "cooling" else 0
|
78 |
+
heating_load = -load / 1000 if mode == "heating" else 0
|
79 |
+
return cooling_load, heating_load
|
80 |
+
|
81 |
+
@staticmethod
|
82 |
+
def day_of_year(month: int, day: int, year: int) -> int:
|
83 |
+
"""Calculate day of the year (n) from month, day, and year, accounting for leap years.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
month (int): Month of the year (1-12).
|
87 |
+
day (int): Day of the month (1-31).
|
88 |
+
year (int): Year.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
int: Day of the year (1-365 or 366 for leap years).
|
92 |
+
|
93 |
+
References:
|
94 |
+
ASHRAE Handbook—Fundamentals, Chapter 18.
|
95 |
+
"""
|
96 |
+
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
97 |
+
if year % 4 == 0 and (year % 100 != 0 or year % 400 == 0):
|
98 |
+
days_in_month[1] = 29
|
99 |
+
return sum(days_in_month[:month-1]) + day
|
100 |
+
|
101 |
+
@staticmethod
|
102 |
+
def equation_of_time(n: int) -> float:
|
103 |
+
"""Calculate Equation of Time (EOT) in minutes using Spencer's formula.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
n (int): Day of the year (1-365 or 366).
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
float: Equation of Time in minutes.
|
110 |
+
|
111 |
+
References:
|
112 |
+
ASHRAE Handbook—Fundamentals, Chapter 18.
|
113 |
+
"""
|
114 |
+
B = (n - 1) * 360 / 365
|
115 |
+
B_rad = math.radians(B)
|
116 |
+
EOT = 229.2 * (0.000075 + 0.001868 * math.cos(B_rad) - 0.032077 * math.sin(B_rad) -
|
117 |
+
0.014615 * math.cos(2 * B_rad) - 0.04089 * math.sin(2 * B_rad))
|
118 |
+
return EOT
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def calculate_dynamic_shgc(glazing_type: str, cos_theta: float) -> float:
|
122 |
+
"""Calculate dynamic SHGC based on incidence angle.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
glazing_type (str): Type of glazing (e.g., 'Single Clear').
|
126 |
+
cos_theta (float): Cosine of the angle of incidence.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
float: Dynamic SHGC value.
|
130 |
+
|
131 |
+
References:
|
132 |
+
ASHRAE Handbook—Fundamentals, Chapter 15, Table 13.
|
133 |
+
"""
|
134 |
+
if glazing_type not in TFMCalculations.SHGC_COEFFICIENTS:
|
135 |
+
logger.warning(f"Unknown glazing type '{glazing_type}'. Using default SHGC coefficients for Single Clear.")
|
136 |
+
glazing_type = "Single Clear"
|
137 |
+
|
138 |
+
c = TFMCalculations.SHGC_COEFFICIENTS[glazing_type]
|
139 |
+
# Incidence angle modifier: f(cos(θ)) = c_0 + c_1·cos(θ) + c_2·cos²(θ) + c_3·cos³(θ) + c_4·cos⁴(θ) + c_5·cos⁵(θ)
|
140 |
+
f_cos_theta = (c[0] + c[1] * cos_theta + c[2] * cos_theta**2 +
|
141 |
+
c[3] * cos_theta**3 + c[4] * cos_theta**4 + c[5] * cos_theta**5)
|
142 |
+
return f_cos_theta
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def get_surface_parameters(component: Any, building_info: Dict, material_library: MaterialLibrary,
|
146 |
+
project_materials: Dict, project_constructions: Dict,
|
147 |
+
project_glazing_materials: Dict, project_door_materials: Dict) -> Tuple[float, float, float, Optional[float], float]:
|
148 |
+
"""
|
149 |
+
Determine surface parameters (tilt, azimuth, h_o, emissivity, solar_absorption) for a component.
|
150 |
+
Uses MaterialLibrary to fetch properties from first layer for walls/roofs, DoorMaterial for doors,
|
151 |
+
and GlazingMaterial for windows/skylights. Handles orientation and tilt based on component type:
|
152 |
+
- Walls, Doors, Windows: Azimuth = elevation base azimuth + component.rotation; Tilt = 90°.
|
153 |
+
- Roofs, Skylights: Azimuth = component.orientation; Tilt = component.tilt (default 180°).
|
154 |
+
|
155 |
+
Args:
|
156 |
+
component: Component object with component_type, elevation, rotation, orientation, tilt,
|
157 |
+
construction, glazing_material, or door_material.
|
158 |
+
building_info (Dict): Building information containing orientation_angle for elevation mapping.
|
159 |
+
material_library: MaterialLibrary instance for accessing library materials/constructions.
|
160 |
+
project_materials: Dict of project-specific Material objects.
|
161 |
+
project_constructions: Dict of project-specific Construction objects.
|
162 |
+
project_glazing_materials: Dict of project-specific GlazingMaterial objects.
|
163 |
+
project_door_materials: Dict of project-specific DoorMaterial objects.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
Tuple[float, float, float, Optional[float], float]: Surface tilt (°), surface azimuth (°),
|
167 |
+
h_o (W/m²·K), emissivity, solar_absorption.
|
168 |
+
"""
|
169 |
+
# Default parameters
|
170 |
+
component_name = getattr(component, 'name', 'unnamed_component')
|
171 |
+
|
172 |
+
# Initialize default values
|
173 |
+
surface_tilt = 90.0 # Default vertical for walls, windows, doors
|
174 |
+
surface_azimuth = 0.0 # Default north-facing
|
175 |
+
h_o = 17.0 # Default exterior convection coefficient
|
176 |
+
emissivity = 0.9 # Default for opaque components
|
177 |
+
solar_absorption = 0.6 # Default
|
178 |
+
|
179 |
try:
|
180 |
+
# Set component-specific defaults based on type
|
181 |
+
if component.component_type == ComponentType.ROOF:
|
182 |
+
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
183 |
+
h_o = 23.0 # W/m²·K for roofs
|
184 |
+
# For roofs, use orientation directly
|
185 |
+
surface_azimuth = getattr(component, 'orientation', 0.0)
|
186 |
+
logger.debug(f"Roof component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
187 |
+
|
188 |
+
elif component.component_type == ComponentType.SKYLIGHT:
|
189 |
+
surface_tilt = getattr(component, 'tilt', 0.0) # Horizontal, upward if tilt absent
|
190 |
+
h_o = 23.0 # W/m²·K for skylights
|
191 |
+
# For skylights, use orientation directly, not elevation
|
192 |
+
surface_azimuth = getattr(component, 'orientation', 0.0)
|
193 |
+
logger.debug(f"Skylight component {component_name}: using orientation={surface_azimuth}, tilt={surface_tilt}")
|
194 |
+
|
195 |
+
elif component.component_type == ComponentType.FLOOR:
|
196 |
+
surface_tilt = 180.0 # Horizontal, downward
|
197 |
+
h_o = 17.0 # W/m²·K
|
198 |
+
surface_azimuth = 0.0 # Default azimuth for floors
|
199 |
+
logger.debug(f"Floor component {component_name}: using default azimuth={surface_azimuth}, tilt={surface_tilt}")
|
200 |
+
|
201 |
+
else: # WALL, DOOR, WINDOW
|
202 |
+
surface_tilt = 90.0 # Vertical
|
203 |
+
h_o = 17.0 # W/m²·K
|
204 |
+
|
205 |
+
# Check for elevation attribute
|
206 |
+
elevation = getattr(component, 'elevation', None)
|
207 |
+
if not elevation:
|
208 |
+
logger.warning(f"Component {component_name} ({component.component_type.value}) is missing 'elevation' field. Using default azimuth=0.")
|
209 |
+
surface_azimuth = 0.0 # Default to north-facing if elevation is missing
|
210 |
+
else:
|
211 |
+
# Define elevation azimuths based on building orientation_angle
|
212 |
+
base_azimuth = building_info.get("orientation_angle", 0.0)
|
213 |
+
elevation_angles = {
|
214 |
+
"A": base_azimuth,
|
215 |
+
"B": (base_azimuth + 90.0) % 360,
|
216 |
+
"C": (base_azimuth + 180.0) % 360,
|
217 |
+
"D": (base_azimuth + 270.0) % 360
|
218 |
+
}
|
219 |
+
|
220 |
+
if elevation not in elevation_angles:
|
221 |
+
logger.warning(f"Invalid elevation '{elevation}' for component {component_name} ({component.component_type.value}). "
|
222 |
+
f"Expected one of {list(elevation_angles.keys())}. Using default azimuth=0.")
|
223 |
+
surface_azimuth = 0.0 # Default to north-facing if elevation is invalid
|
224 |
+
else:
|
225 |
+
# Add component rotation to elevation azimuth
|
226 |
+
surface_azimuth = (elevation_angles[elevation] + getattr(component, 'rotation', 0.0)) % 360
|
227 |
+
logger.debug(f"Component {component_name} ({component.component_type.value}): elevation={elevation}, "
|
228 |
+
f"base_azimuth={elevation_angles[elevation]}, rotation={getattr(component, 'rotation', 0.0)}, "
|
229 |
+
f"total_azimuth={surface_azimuth}, tilt={surface_tilt}")
|
230 |
+
|
231 |
+
# Fetch material properties
|
232 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF]:
|
233 |
+
construction = getattr(component, 'construction', None)
|
234 |
+
if not construction:
|
235 |
+
logger.warning(f"No construction defined for {component_name} ({component.component_type.value}). "
|
236 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
237 |
+
else:
|
238 |
+
# Get construction from library or project
|
239 |
+
construction_obj = None
|
240 |
+
if hasattr(construction, 'name'):
|
241 |
+
construction_obj = (project_constructions.get(construction.name) or
|
242 |
+
material_library.library_constructions.get(construction.name))
|
243 |
+
|
244 |
+
if not construction_obj:
|
245 |
+
logger.warning(f"Construction not found for {component_name} ({component.component_type.value}). "
|
246 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
247 |
+
elif not construction_obj.layers:
|
248 |
+
logger.warning(f"No layers in construction for {component_name} ({component.component_type.value}). "
|
249 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
250 |
+
else:
|
251 |
+
# Use first (outermost) layer's properties
|
252 |
+
first_layer = construction_obj.layers[0]
|
253 |
+
material = first_layer.get("material")
|
254 |
+
if material:
|
255 |
+
solar_absorption = getattr(material, 'solar_absorption', 0.6)
|
256 |
+
emissivity = getattr(material, 'emissivity', 0.9)
|
257 |
+
logger.debug(f"Using first layer material for {component_name} ({component.component_type.value}): "
|
258 |
+
f"solar_absorption={solar_absorption}, emissivity={emissivity}")
|
259 |
+
|
260 |
+
elif component.component_type == ComponentType.DOOR:
|
261 |
+
door_material = getattr(component, 'door_material', None)
|
262 |
+
if not door_material:
|
263 |
+
logger.warning(f"No door material defined for {component_name} ({component.component_type.value}). "
|
264 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
265 |
+
else:
|
266 |
+
# Get door material from library or project
|
267 |
+
door_material_obj = None
|
268 |
+
if hasattr(door_material, 'name'):
|
269 |
+
door_material_obj = (project_door_materials.get(door_material.name) or
|
270 |
+
material_library.library_door_materials.get(door_material.name))
|
271 |
+
|
272 |
+
if not door_material_obj:
|
273 |
+
logger.warning(f"Door material not found for {component_name} ({component.component_type.value}). "
|
274 |
+
f"Using defaults: solar_absorption=0.6, emissivity=0.9.")
|
275 |
+
else:
|
276 |
+
solar_absorption = getattr(door_material_obj, 'solar_absorption', 0.6)
|
277 |
+
emissivity = getattr(door_material_obj, 'emissivity', 0.9)
|
278 |
+
logger.debug(f"Using door material for {component_name} ({component.component_type.value}): "
|
279 |
+
f"solar_absorption={solar_absorption}, emissivity={emissivity}")
|
280 |
+
|
281 |
+
elif component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
282 |
+
glazing_material = getattr(component, 'glazing_material', None)
|
283 |
+
if not glazing_material:
|
284 |
+
logger.warning(f"No glazing material defined for {component_name} ({component.component_type.value}). "
|
285 |
+
f"Using default SHGC=0.7, h_o={h_o}.")
|
286 |
+
shgc = 0.7
|
287 |
+
else:
|
288 |
+
# Get glazing material from library or project
|
289 |
+
glazing_material_obj = None
|
290 |
+
if hasattr(glazing_material, 'name'):
|
291 |
+
glazing_material_obj = (project_glazing_materials.get(glazing_material.name) or
|
292 |
+
material_library.library_glazing_materials.get(glazing_material.name))
|
293 |
+
|
294 |
+
if not glazing_material_obj:
|
295 |
+
logger.warning(f"Glazing material not found for {component_name} ({component.component_type.value}). "
|
296 |
+
f"Using default SHGC=0.7, h_o={h_o}.")
|
297 |
+
shgc = 0.7
|
298 |
+
else:
|
299 |
+
shgc = getattr(glazing_material_obj, 'shgc', 0.7)
|
300 |
+
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
301 |
+
logger.debug(f"Using glazing material for {component_name} ({component.component_type.value}): "
|
302 |
+
f"shgc={shgc}, h_o={h_o}")
|
303 |
+
emissivity = None # Not used for glazing
|
304 |
+
|
305 |
except Exception as e:
|
306 |
+
logger.error(f"Error retrieving surface parameters for {component_name} ({component.component_type.value}): {str(e)}")
|
307 |
+
# Apply defaults based on component type
|
308 |
+
if component.component_type == ComponentType.ROOF:
|
309 |
+
surface_tilt = 0.0 # Horizontal, upward
|
310 |
+
h_o = 23.0 # W/m²·K for roofs
|
311 |
+
surface_azimuth = 0.0 # Default north
|
312 |
+
elif component.component_type == ComponentType.SKYLIGHT:
|
313 |
+
surface_tilt = 0.0 # Horizontal, upward
|
314 |
+
h_o = 23.0 # W/m²·K for skylights
|
315 |
+
surface_azimuth = 0.0 # Default north
|
316 |
+
elif component.component_type == ComponentType.FLOOR:
|
317 |
+
surface_tilt = 180.0 # Horizontal, downward
|
318 |
+
h_o = 17.0 # W/m²·K
|
319 |
+
surface_azimuth = 0.0 # Default north
|
320 |
+
else: # WALL, DOOR, WINDOW
|
321 |
+
surface_tilt = 90.0 # Vertical
|
322 |
+
h_o = 17.0 # W/m²·K
|
323 |
+
surface_azimuth = 0.0 # Default north
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
+
# Apply material defaults
|
326 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.DOOR]:
|
327 |
+
solar_absorption = 0.6
|
328 |
+
emissivity = 0.9
|
329 |
+
else: # WINDOW, SKYLIGHT
|
330 |
+
shgc = 0.7
|
331 |
+
emissivity = None
|
332 |
+
|
333 |
+
# Debug output for all components
|
334 |
+
logger.info(f"Final surface parameters for {component_name} ({component.component_type.value}): "
|
335 |
+
f"tilt={surface_tilt:.1f}, azimuth={surface_azimuth:.1f}, h_o={h_o:.1f}")
|
336 |
+
|
337 |
+
return surface_tilt, surface_azimuth, h_o, emissivity, solar_absorption
|
338 |
+
|
339 |
+
@staticmethod
|
340 |
+
def calculate_solar_load(component, hourly_data: Dict, hour: int, building_orientation: float, mode: str = "none") -> float:
|
341 |
+
"""Calculate solar load in kW (cooling only) using ASHRAE-compliant solar calculations.
|
342 |
|
343 |
+
Args:
|
344 |
+
component: Component object with area, component_type, elevation, glazing_material, shgc, iac.
|
345 |
+
hourly_data (Dict): Hourly weather data including solar radiation.
|
346 |
+
hour (int): Current hour.
|
347 |
+
building_orientation (float): Building orientation angle in degrees.
|
348 |
+
mode (str): Operating mode ('cooling', 'heating', 'none').
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
float: Solar cooling load in kW. Returns 0 for non-cooling modes or non-fenestration components.
|
352 |
+
|
353 |
+
References:
|
354 |
+
ASHRAE Handbook—Fundamentals, Chapters 15 and 18.
|
355 |
+
"""
|
356 |
+
# Only calculate solar loads in cooling mode
|
357 |
+
if mode != "cooling":
|
358 |
+
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
+
# Skip floors for solar calculation
|
361 |
+
if component.component_type == ComponentType.FLOOR:
|
362 |
+
return 0
|
363 |
+
|
364 |
+
component_name = getattr(component, 'name', 'unnamed_component')
|
365 |
+
|
366 |
+
try:
|
367 |
+
# Ensure MaterialLibrary is properly initialized and accessible
|
368 |
+
material_library = st.session_state.get("material_library")
|
369 |
+
if not material_library:
|
370 |
+
logger.error(f"MaterialLibrary not found in session_state for {component_name} ({component.component_type.value})")
|
371 |
+
# Instead of raising an error, initialize a new MaterialLibrary
|
372 |
+
from data.material_library import MaterialLibrary
|
373 |
+
material_library = MaterialLibrary()
|
374 |
+
st.session_state.material_library = material_library
|
375 |
+
logger.info(f"Created new MaterialLibrary for {component_name} ({component.component_type.value})")
|
376 |
|
377 |
+
project_materials = st.session_state.get("project_materials", {})
|
378 |
+
project_constructions = st.session_state.get("project_constructions", {})
|
379 |
+
project_glazing_materials = st.session_state.get("project_glazing_materials", {})
|
380 |
+
project_door_materials = st.session_state.get("project_door_materials", {})
|
381 |
+
|
382 |
+
# Get location parameters from climate_data
|
383 |
+
climate_data = st.session_state.get("climate_data", {})
|
384 |
+
latitude = climate_data.get("latitude", 0.0)
|
385 |
+
longitude = climate_data.get("longitude", 0.0)
|
386 |
+
timezone = climate_data.get("time_zone", 0.0)
|
387 |
+
|
388 |
+
# Get ground reflectivity (default 0.2)
|
389 |
+
ground_reflectivity = st.session_state.get("ground_reflectivity", 0.2)
|
390 |
+
|
391 |
+
# Validate input parameters
|
392 |
+
if not -90 <= latitude <= 90:
|
393 |
+
logger.warning(f"Invalid latitude {latitude} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
394 |
+
latitude = 0.0
|
395 |
+
if not -180 <= longitude <= 180:
|
396 |
+
logger.warning(f"Invalid longitude {longitude} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
397 |
+
longitude = 0.0
|
398 |
+
if not -12 <= timezone <= 14:
|
399 |
+
logger.warning(f"Invalid timezone {timezone} for {component_name} ({component.component_type.value}). Using default 0.0.")
|
400 |
+
timezone = 0.0
|
401 |
+
if not 0 <= ground_reflectivity <= 1:
|
402 |
+
logger.warning(f"Invalid ground_reflectivity {ground_reflectivity} for {component_name} ({component.component_type.value}). Using default 0.2.")
|
403 |
+
ground_reflectivity = 0.2
|
404 |
+
|
405 |
+
# Ensure hourly_data has required fields
|
406 |
+
required_fields = ["month", "day", "hour", "global_horizontal_radiation", "direct_normal_radiation",
|
407 |
+
"diffuse_horizontal_radiation", "dry_bulb"]
|
408 |
+
if not all(field in hourly_data for field in required_fields):
|
409 |
+
logger.warning(f"Missing required fields in hourly_data for hour {hour} for {component_name} ({component.component_type.value}): {hourly_data}")
|
410 |
+
return 0
|
411 |
+
|
412 |
+
# Skip if GHI <= 0
|
413 |
+
if hourly_data["global_horizontal_radiation"] <= 0:
|
414 |
+
logger.info(f"No solar load for hour {hour} due to GHI={hourly_data['global_horizontal_radiation']} for {component_name} ({component.component_type.value})")
|
415 |
+
return 0
|
416 |
+
|
417 |
+
# Extract weather data
|
418 |
+
month = hourly_data["month"]
|
419 |
+
day = hourly_data["day"]
|
420 |
+
hour = hourly_data["hour"]
|
421 |
+
ghi = hourly_data["global_horizontal_radiation"]
|
422 |
+
dni = hourly_data.get("direct_normal_radiation", ghi * 0.7) # Fallback: estimate DNI
|
423 |
+
dhi = hourly_data.get("diffuse_horizontal_radiation", ghi * 0.3) # Fallback: estimate DHI
|
424 |
+
outdoor_temp = hourly_data["dry_bulb"]
|
425 |
+
|
426 |
+
if ghi < 0 or dni < 0 or dhi < 0:
|
427 |
+
logger.error(f"Negative radiation values for {month}/{day}/{hour} for {component_name} ({component.component_type.value})")
|
428 |
+
raise ValueError(f"Negative radiation values for {month}/{day}/{hour}")
|
429 |
+
|
430 |
+
# Add detailed logging for solar calculation
|
431 |
+
logger.info(f"Processing solar for {month}/{day}/{hour} with GHI={ghi}, DNI={dni}, DHI={dhi}, "
|
432 |
+
f"dry_bulb={outdoor_temp} for {component_name} ({component.component_type.value})")
|
433 |
+
|
434 |
+
# Step 1: Local Solar Time (LST) with Equation of Time
|
435 |
+
year = 2025 # Fixed year since not provided
|
436 |
+
n = TFMCalculations.day_of_year(month, day, year)
|
437 |
+
EOT = TFMCalculations.equation_of_time(n)
|
438 |
+
lambda_std = 15 * timezone # Standard meridian longitude (°)
|
439 |
+
standard_time = hour - 1 + 0.5 # Convert to decimal, assume mid-hour
|
440 |
+
LST = standard_time + (4 * (lambda_std - longitude) + EOT) / 60
|
441 |
+
|
442 |
+
# Step 2: Solar Declination (δ)
|
443 |
+
delta = 23.45 * math.sin(math.radians(360 / 365 * (284 + n)))
|
444 |
+
|
445 |
+
# Step 3: Hour Angle (HRA)
|
446 |
+
hra = 15 * (LST - 12)
|
447 |
+
|
448 |
+
# Step 4: Solar Altitude (α) and Azimuth (ψ)
|
449 |
+
phi = math.radians(latitude)
|
450 |
+
delta_rad = math.radians(delta)
|
451 |
+
hra_rad = math.radians(hra)
|
452 |
+
|
453 |
+
sin_alpha = math.sin(phi) * math.sin(delta_rad) + math.cos(phi) * math.cos(delta_rad) * math.cos(hra_rad)
|
454 |
+
alpha = math.degrees(math.asin(sin_alpha))
|
455 |
+
|
456 |
+
if abs(math.cos(math.radians(alpha))) < 0.01:
|
457 |
+
azimuth = 0 # North at sunrise/sunset
|
458 |
+
else:
|
459 |
+
sin_az = math.cos(delta_rad) * math.sin(hra_rad) / math.cos(math.radians(alpha))
|
460 |
+
cos_az = (sin_alpha * math.sin(phi) - math.sin(delta_rad)) / (math.cos(math.radians(alpha)) * math.cos(phi))
|
461 |
+
azimuth = math.degrees(math.atan2(sin_az, cos_az))
|
462 |
+
if hra > 0: # Afternoon
|
463 |
+
azimuth = 360 - azimuth if azimuth > 0 else -azimuth
|
464 |
+
|
465 |
+
logger.info(f"Solar angles for {month}/{day}/{hour}: declination={delta:.2f}, LST={LST:.2f}, "
|
466 |
+
f"HRA={hra:.2f}, altitude={alpha:.2f}, azimuth={azimuth:.2f} for {component_name} ({component.component_type.value})")
|
467 |
+
|
468 |
+
# Step 5: Get surface parameters with robust error handling
|
469 |
+
building_info = {"orientation_angle": building_orientation}
|
470 |
+
try:
|
471 |
+
surface_tilt, surface_azimuth, h_o, emissivity, solar_absorption = \
|
472 |
+
TFMCalculations.get_surface_parameters(
|
473 |
+
component, building_info, material_library, project_materials,
|
474 |
+
project_constructions, project_glazing_materials, project_door_materials
|
475 |
+
)
|
476 |
+
except Exception as e:
|
477 |
+
logger.error(f"Error getting surface parameters for {component_name}: {str(e)}. Using defaults.")
|
478 |
+
# Apply defaults based on component type
|
479 |
+
if component.component_type == ComponentType.ROOF:
|
480 |
+
surface_tilt = 0.0 # Horizontal, upward
|
481 |
+
surface_azimuth = 0.0 # Default north
|
482 |
+
elif component.component_type == ComponentType.SKYLIGHT:
|
483 |
+
surface_tilt = 0.0 # Horizontal, upward
|
484 |
+
surface_azimuth = 0.0 # Default north
|
485 |
+
elif component.component_type == ComponentType.FLOOR:
|
486 |
+
surface_tilt = 180.0 # Horizontal, downward
|
487 |
+
surface_azimuth = 0.0 # Default north
|
488 |
+
else: # WALL, DOOR, WINDOW
|
489 |
+
surface_tilt = 90.0 # Vertical
|
490 |
+
surface_azimuth = 0.0 # Default north
|
491 |
+
|
492 |
+
# Apply material defaults
|
493 |
+
if component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.DOOR]:
|
494 |
+
solar_absorption = 0.6
|
495 |
+
h_o = 17.0 if component.component_type == ComponentType.WALL else 23.0
|
496 |
+
else: # WINDOW, SKYLIGHT
|
497 |
+
solar_absorption = 0.0 # Not used for glazing
|
498 |
+
h_o = 17.0 if component.component_type == ComponentType.WINDOW else 23.0
|
499 |
+
|
500 |
+
# Step 6: Calculate angle of incidence (θ)
|
501 |
+
# Convert angles to radians for calculation
|
502 |
+
alpha_rad = math.radians(alpha)
|
503 |
+
surface_tilt_rad = math.radians(surface_tilt)
|
504 |
+
azimuth_rad = math.radians(azimuth)
|
505 |
+
surface_azimuth_rad = math.radians(surface_azimuth)
|
506 |
|
507 |
+
# Calculate cos(θ) using the solar position and surface orientation
|
508 |
+
cos_theta = (math.sin(alpha_rad) * math.cos(surface_tilt_rad) +
|
509 |
+
math.cos(alpha_rad) * math.sin(surface_tilt_rad) *
|
510 |
+
math.cos(azimuth_rad - surface_azimuth_rad))
|
511 |
|
512 |
+
# Clamp to [0, 1] to avoid numerical issues
|
513 |
+
cos_theta = max(min(cos_theta, 1.0), 0.0)
|
514 |
|
515 |
+
# Log the calculated values
|
516 |
+
logger.info(f" Component {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
517 |
+
f"surface_tilt={surface_tilt:.2f}, surface_azimuth={surface_azimuth:.2f}, "
|
518 |
+
f"cos_theta={cos_theta:.4f}")
|
519 |
+
|
520 |
+
# Step 7: Calculate total incident radiation (I_t)
|
521 |
+
# Calculate view factor for ground-reflected radiation
|
522 |
+
view_factor = (1 - math.cos(surface_tilt_rad)) / 2
|
|
|
|
|
|
|
|
|
|
|
523 |
|
524 |
+
# Calculate ground-reflected radiation
|
525 |
+
ground_reflected = ground_reflectivity * ghi * view_factor
|
526 |
|
527 |
+
# Calculate total incident radiation
|
528 |
+
if cos_theta > 0: # Surface receives direct beam radiation
|
529 |
+
I_t = dni * cos_theta + dhi + ground_reflected
|
530 |
+
else: # Surface in shade, only diffuse and reflected
|
531 |
+
I_t = dhi + ground_reflected
|
|
|
|
|
|
|
|
|
532 |
|
533 |
+
# Step 8: Calculate solar heat gain based on component type
|
534 |
+
solar_heat_gain = 0.0
|
|
|
535 |
|
536 |
+
if component.component_type in [ComponentType.WINDOW, ComponentType.SKYLIGHT]:
|
537 |
+
# For windows/skylights, get SHGC from material
|
538 |
+
shgc = 0.7 # Default
|
539 |
+
glazing_material = getattr(component, 'glazing_material', None)
|
540 |
+
if glazing_material:
|
541 |
+
glazing_material_obj = None
|
542 |
+
if hasattr(glazing_material, 'name'):
|
543 |
+
glazing_material_obj = (project_glazing_materials.get(glazing_material.name) or
|
544 |
+
material_library.library_glazing_materials.get(glazing_material.name))
|
545 |
+
|
546 |
+
if glazing_material_obj:
|
547 |
+
shgc = getattr(glazing_material_obj, 'shgc', 0.7)
|
548 |
+
h_o = getattr(glazing_material_obj, 'h_o', h_o)
|
549 |
+
else:
|
550 |
+
logger.warning(f"Glazing material not found for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
551 |
+
else:
|
552 |
+
logger.warning(f"No glazing material defined for {component_name} ({component.component_type.value}). Using default SHGC=0.7.")
|
553 |
+
|
554 |
+
# Get glazing type for dynamic SHGC calculation
|
555 |
+
glazing_type = "Single Clear" # Default
|
556 |
+
if hasattr(component, 'name') and component.name in TFMCalculations.GLAZING_TYPE_MAPPING:
|
557 |
+
glazing_type = TFMCalculations.GLAZING_TYPE_MAPPING[component.name]
|
558 |
+
|
559 |
+
# Get internal shading coefficient
|
560 |
+
iac = getattr(component, 'iac', 1.0) # Default internal shading
|
561 |
+
|
562 |
+
# Calculate dynamic SHGC based on incidence angle
|
563 |
+
shgc_dynamic = shgc * TFMCalculations.calculate_dynamic_shgc(glazing_type, cos_theta)
|
564 |
+
|
565 |
+
# Calculate solar heat gain for fenestration
|
566 |
+
solar_heat_gain = component.area * shgc_dynamic * I_t * iac / 1000 # kW
|
567 |
+
|
568 |
+
logger.info(f"Fenestration solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
569 |
+
f"{solar_heat_gain:.4f} kW (area={component.area}, shgc_dynamic={shgc_dynamic:.4f}, "
|
570 |
+
f"I_t={I_t:.2f}, iac={iac})")
|
571 |
|
572 |
+
elif component.component_type in [ComponentType.WALL, ComponentType.ROOF, ComponentType.DOOR]:
|
573 |
+
# For opaque surfaces, use solar absorptivity and surface resistance
|
574 |
+
surface_resistance = 1/h_o # m²·K/W
|
575 |
+
|
576 |
+
# Calculate absorbed solar radiation
|
577 |
+
solar_heat_gain = component.area * solar_absorption * I_t * surface_resistance / 1000 # kW
|
578 |
+
|
579 |
+
logger.info(f"Opaque surface solar heat gain for {component_name} ({component.component_type.value}) at {month}/{day}/{hour}: "
|
580 |
+
f"{solar_heat_gain:.4f} kW (area={component.area}, solar_absorption={solar_absorption:.2f}, "
|
581 |
+
f"I_t={I_t:.2f}, surface_resistance={surface_resistance:.4f})")
|
582 |
|
583 |
+
return solar_heat_gain
|
584 |
+
|
585 |
+
except Exception as e:
|
586 |
+
logger.error(f"Error calculating solar load for {component_name} ({component.component_type.value}) at hour {hour}: {str(e)}")
|
587 |
+
return 0
|
588 |
+
|
589 |
+
@staticmethod
|
590 |
+
def calculate_internal_load(internal_loads: Dict, hour: int, operation_hours: int, area: float) -> float:
|
591 |
+
"""Calculate total internal load in kW."""
|
592 |
+
total_load = 0
|
593 |
+
for group in internal_loads.get("people", []):
|
594 |
+
activity_data = group["activity_data"]
|
595 |
+
sensible = (activity_data["sensible_min_w"] + activity_data["sensible_max_w"]) / 2
|
596 |
+
latent = (activity_data["latent_min_w"] + activity_data["latent_max_w"]) / 2
|
597 |
+
load_per_person = sensible + latent
|
598 |
+
total_load += group["num_people"] * load_per_person * group["diversity_factor"]
|
599 |
+
for light in internal_loads.get("lighting", []):
|
600 |
+
lpd = light["lpd"]
|
601 |
+
lighting_operating_hours = light["operating_hours"]
|
602 |
+
fraction = min(lighting_operating_hours, operation_hours) / operation_hours if operation_hours > 0 else 0
|
603 |
+
lighting_load = lpd * area * fraction
|
604 |
+
total_load += lighting_load
|
605 |
+
equipment = internal_loads.get("equipment")
|
606 |
+
if equipment:
|
607 |
+
total_power_density = equipment.get("total_power_density", 0)
|
608 |
+
equipment_load = total_power_density * area
|
609 |
+
total_load += equipment_load
|
610 |
+
return total_load / 1000
|
611 |
+
|
612 |
+
@staticmethod
|
613 |
+
def calculate_ventilation_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
614 |
+
"""Calculate ventilation load for heating and cooling in kW based on mode."""
|
615 |
+
if mode == "none":
|
616 |
+
return 0, 0
|
617 |
+
ventilation = internal_loads.get("ventilation")
|
618 |
+
if not ventilation:
|
619 |
+
return 0, 0
|
620 |
+
space_rate = ventilation.get("space_rate", 0.3) # L/s/m²
|
621 |
+
people_rate = ventilation.get("people_rate", 2.5) # L/s/person
|
622 |
+
num_people = sum(group["num_people"] for group in internal_loads.get("people", []))
|
623 |
+
ventilation_flow = (space_rate * area + people_rate * num_people) / 1000 # m³/s
|
624 |
+
air_density = 1.2 # kg/m³
|
625 |
+
specific_heat = 1000 # J/kg·K
|
626 |
+
delta_t = outdoor_temp - indoor_temp
|
627 |
+
if mode == "cooling" and delta_t <= 0:
|
628 |
+
return 0, 0
|
629 |
+
if mode == "heating" and delta_t >= 0:
|
630 |
+
return 0, 0
|
631 |
+
load = ventilation_flow * air_density * specific_heat * delta_t / 1000 # kW
|
632 |
+
cooling_load = load if mode == "cooling" else 0
|
633 |
+
heating_load = -load if mode == "heating" else 0
|
634 |
+
return cooling_load, heating_load
|
635 |
+
|
636 |
+
@staticmethod
|
637 |
+
def calculate_infiltration_load(internal_loads: Dict, outdoor_temp: float, indoor_temp: float, area: float, building_info: Dict, mode: str = "none") -> tuple[float, float]:
|
638 |
+
"""Calculate infiltration load for heating and cooling in kW based on mode."""
|
639 |
+
if mode == "none":
|
640 |
+
return 0, 0
|
641 |
+
infiltration = internal_loads.get("infiltration")
|
642 |
+
if not infiltration:
|
643 |
+
return 0, 0
|
644 |
+
method = infiltration.get("method", "ACH")
|
645 |
+
settings = infiltration.get("settings", {})
|
646 |
+
building_height = building_info.get("building_height", 3.0)
|
647 |
+
volume = area * building_height # m³
|
648 |
+
air_density = 1.2 # kg/m³
|
649 |
+
specific_heat = 1000 # J/kg·K
|
650 |
+
delta_t = outdoor_temp - indoor_temp
|
651 |
+
if mode == "cooling" and delta_t <= 0:
|
652 |
+
return 0, 0
|
653 |
+
if mode == "heating" and delta_t >= 0:
|
654 |
+
return 0, 0
|
655 |
+
if method == "ACH":
|
656 |
+
ach = settings.get("rate", 0.5)
|
657 |
+
infiltration_flow = ach * volume / 3600 # m³/s
|
658 |
+
elif method == "Crack Flow":
|
659 |
+
ela = settings.get("ela", 0.0001) # m²/m²
|
660 |
+
wind_speed = 4.0 # m/s (assumed)
|
661 |
+
infiltration_flow = ela * area * wind_speed / 2 # m³/s
|
662 |
+
else: # Empirical Equations
|
663 |
+
c = settings.get("c", 0.1)
|
664 |
+
n = settings.get("n", 0.65)
|
665 |
+
delta_t_abs = abs(delta_t)
|
666 |
+
infiltration_flow = c * (delta_t_abs ** n) * area / 3600 # m³/s
|
667 |
+
load = infiltration_flow * air_density * specific_heat * delta_t / 1000 # kW
|
668 |
+
cooling_load = load if mode == "cooling" else 0
|
669 |
+
heating_load = -load if mode == "heating" else 0
|
670 |
+
return cooling_load, heating_load
|
671 |
+
|
672 |
+
@staticmethod
|
673 |
+
def get_adaptive_comfort_temp(outdoor_temp: float) -> float:
|
674 |
+
"""Calculate adaptive comfort temperature per ASHRAE 55."""
|
675 |
+
if 10 <= outdoor_temp <= 33.5:
|
676 |
+
return 0.31 * outdoor_temp + 17.8
|
677 |
+
return 24.0 # Default to standard setpoint if outside range
|
678 |
+
|
679 |
+
@staticmethod
|
680 |
+
def filter_hourly_data(hourly_data: List[Dict], sim_period: Dict, climate_data: Dict) -> List[Dict]:
|
681 |
+
"""Filter hourly data based on simulation period, ignoring year."""
|
682 |
+
if sim_period["type"] == "Full Year":
|
683 |
+
return hourly_data
|
684 |
+
filtered_data = []
|
685 |
+
if sim_period["type"] == "From-to":
|
686 |
+
start_month = sim_period["start_date"].month
|
687 |
+
start_day = sim_period["start_date"].day
|
688 |
+
end_month = sim_period["end_date"].month
|
689 |
+
end_day = sim_period["end_date"].day
|
690 |
+
for data in hourly_data:
|
691 |
+
month, day = data["month"], data["day"]
|
692 |
+
if (month > start_month or (month == start_month and day >= start_day)) and \
|
693 |
+
(month < end_month or (month == end_month and day <= end_day)):
|
694 |
+
filtered_data.append(data)
|
695 |
+
elif sim_period["type"] in ["HDD", "CDD"]:
|
696 |
+
base_temp = sim_period.get("base_temp", 18.3 if sim_period["type"] == "HDD" else 23.9)
|
697 |
+
for data in hourly_data:
|
698 |
+
temp = data["dry_bulb"]
|
699 |
+
if (sim_period["type"] == "HDD" and temp < base_temp) or (sim_period["type"] == "CDD" and temp > base_temp):
|
700 |
+
filtered_data.append(data)
|
701 |
+
return filtered_data
|
702 |
+
|
703 |
+
@staticmethod
|
704 |
+
def get_indoor_conditions(indoor_conditions: Dict, hour: int, outdoor_temp: float) -> Dict:
|
705 |
+
"""Determine indoor conditions based on user settings."""
|
706 |
+
if indoor_conditions["type"] == "Fixed":
|
707 |
+
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
708 |
+
if mode == "cooling":
|
709 |
+
return {
|
710 |
+
"temperature": indoor_conditions.get("cooling_setpoint", {}).get("temperature", 24.0),
|
711 |
+
"rh": indoor_conditions.get("cooling_setpoint", {}).get("rh", 50.0)
|
712 |
+
}
|
713 |
+
elif mode == "heating":
|
714 |
+
return {
|
715 |
+
"temperature": indoor_conditions.get("heating_setpoint", {}).get("temperature", 22.0),
|
716 |
+
"rh": indoor_conditions.get("heating_setpoint", {}).get("rh", 50.0)
|
717 |
+
}
|
718 |
+
else:
|
719 |
+
return {"temperature": 24.0, "rh": 50.0}
|
720 |
+
elif indoor_conditions["type"] == "Time-varying":
|
721 |
+
schedule = indoor_conditions.get("schedule", [])
|
722 |
+
if schedule:
|
723 |
+
hour_idx = hour % 24
|
724 |
+
for entry in schedule:
|
725 |
+
if entry["hour"] == hour_idx:
|
726 |
+
return {"temperature": entry["temperature"], "rh": entry["rh"]}
|
727 |
+
return {"temperature": 24.0, "rh": 50.0}
|
728 |
+
else: # Adaptive
|
729 |
+
return {"temperature": TFMCalculations.get_adaptive_comfort_temp(outdoor_temp), "rh": 50.0}
|
730 |
+
|
731 |
+
@staticmethod
|
732 |
+
def calculate_tfm_loads(components: Dict, hourly_data: List[Dict], indoor_conditions: Dict, internal_loads: Dict, building_info: Dict, sim_period: Dict, hvac_settings: Dict) -> List[Dict]:
|
733 |
+
"""Calculate TFM loads for heating and cooling with user-defined filters and temperature threshold."""
|
734 |
+
filtered_data = TFMCalculations.filter_hourly_data(hourly_data, sim_period, building_info)
|
735 |
+
temp_loads = []
|
736 |
+
building_orientation = building_info.get("orientation_angle", 0.0)
|
737 |
+
operating_periods = hvac_settings.get("operating_hours", [{"start": 8, "end": 18}])
|
738 |
+
area = building_info.get("floor_area", 100.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
739 |
|
740 |
+
# Ensure MaterialLibrary is properly initialized
|
741 |
+
if "material_library" not in st.session_state:
|
742 |
+
from data.material_library import MaterialLibrary
|
743 |
+
st.session_state.material_library = MaterialLibrary()
|
744 |
+
logger.info("Initialized MaterialLibrary in session_state for solar calculations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
|
746 |
+
# Pre-calculate CTF coefficients for all components using CTFCalculator
|
747 |
+
for comp_list in components.values():
|
748 |
+
for comp in comp_list:
|
749 |
+
comp.ctf = CTFCalculator.calculate_ctf_coefficients(comp)
|
750 |
+
|
751 |
+
for hour_data in filtered_data:
|
752 |
+
hour = hour_data["hour"]
|
753 |
+
outdoor_temp = hour_data["dry_bulb"]
|
754 |
+
indoor_cond = TFMCalculations.get_indoor_conditions(indoor_conditions, hour, outdoor_temp)
|
755 |
+
indoor_temp = indoor_cond["temperature"]
|
756 |
+
# Initialize all loads to 0
|
757 |
+
conduction_cooling = conduction_heating = solar = internal = ventilation_cooling = ventilation_heating = infiltration_cooling = infiltration_heating = 0
|
758 |
+
# Check if hour is within operating periods
|
759 |
+
is_operating = False
|
760 |
+
for period in operating_periods:
|
761 |
+
start_hour = period.get("start", 8)
|
762 |
+
end_hour = period.get("end", 18)
|
763 |
+
if start_hour <= hour % 24 <= end_hour:
|
764 |
+
is_operating = True
|
765 |
+
break
|
766 |
+
# Determine mode based on temperature threshold (18°C)
|
767 |
+
mode = "none" if abs(outdoor_temp - 18) < 0.01 else "cooling" if outdoor_temp > 18 else "heating"
|
768 |
+
if is_operating and mode == "cooling":
|
769 |
+
# Calculate solar load for each component and accumulate
|
770 |
+
for comp_list in components.values():
|
771 |
+
for comp in comp_list:
|
772 |
+
cool_load, _ = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="cooling")
|
773 |
+
conduction_cooling += cool_load
|
774 |
+
|
775 |
+
# Calculate solar load for each component and accumulate
|
776 |
+
component_solar_load = TFMCalculations.calculate_solar_load(comp, hour_data, hour, building_orientation, mode="cooling")
|
777 |
+
solar += component_solar_load
|
778 |
+
|
779 |
+
# Add detailed logging for solar load accumulation
|
780 |
+
logger.info(f"Component {comp.name} ({comp.component_type.value}) solar load: {component_solar_load:.3f} kW, accumulated solar: {solar:.3f} kW")
|
781 |
|
782 |
+
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
783 |
+
ventilation_cooling, _ = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
784 |
+
infiltration_cooling, _ = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="cooling")
|
785 |
+
elif is_operating and mode == "heating":
|
786 |
+
for comp_list in components.values():
|
787 |
+
for comp in comp_list:
|
788 |
+
_, heat_load = TFMCalculations.calculate_conduction_load(comp, outdoor_temp, indoor_temp, hour, mode="heating")
|
789 |
+
conduction_heating += heat_load
|
790 |
+
internal = TFMCalculations.calculate_internal_load(internal_loads, hour, max([p["end"] - p["start"] for p in operating_periods]), area)
|
791 |
+
_, ventilation_heating = TFMCalculations.calculate_ventilation_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
792 |
+
_, infiltration_heating = TFMCalculations.calculate_infiltration_load(internal_loads, outdoor_temp, indoor_temp, area, building_info, mode="heating")
|
793 |
+
else: # mode == "none" or not is_operating
|
794 |
+
internal = 0 # No internal loads when no heating or cooling is needed or outside operating hours
|
795 |
|
796 |
+
# Add detailed logging for total loads
|
797 |
+
logger.info(f"Hour {hour} total loads - conduction: {conduction_cooling:.3f} kW, solar: {solar:.3f} kW, internal: {internal:.3f} kW")
|
798 |
+
|
799 |
+
# Calculate total loads, subtracting internal load for heating
|
800 |
+
total_cooling = conduction_cooling + solar + internal + ventilation_cooling + infiltration_cooling
|
801 |
+
total_heating = max(conduction_heating + ventilation_heating + infiltration_heating - internal, 0)
|
802 |
+
# Enforce mutual exclusivity within hour
|
803 |
+
if mode == "cooling":
|
804 |
+
total_heating = 0
|
805 |
+
elif mode == "heating":
|
806 |
+
total_cooling = 0
|
807 |
+
temp_loads.append({
|
808 |
+
"hour": hour,
|
809 |
+
"month": hour_data["month"],
|
810 |
+
"day": hour_data["day"],
|
811 |
+
"conduction_cooling": conduction_cooling,
|
812 |
+
"conduction_heating": conduction_heating,
|
813 |
+
"solar": solar,
|
814 |
+
"internal": internal,
|
815 |
+
"ventilation_cooling": ventilation_cooling,
|
816 |
+
"ventilation_heating": ventilation_heating,
|
817 |
+
"infiltration_cooling": infiltration_cooling,
|
818 |
+
"infiltration_heating": infiltration_heating,
|
819 |
+
"total_cooling": total_cooling,
|
820 |
+
"total_heating": total_heating
|
821 |
+
})
|
822 |
+
# Group loads by day and apply daily control
|
823 |
+
loads_by_day = defaultdict(list)
|
824 |
+
for load in temp_loads:
|
825 |
+
day_key = (load["month"], load["day"])
|
826 |
+
loads_by_day[day_key].append(load)
|
827 |
+
final_loads = []
|
828 |
+
for day_key, day_loads in loads_by_day.items():
|
829 |
+
# Count hours with non-zero cooling and heating loads
|
830 |
+
cooling_hours = sum(1 for load in day_loads if load["total_cooling"] > 0)
|
831 |
+
heating_hours = sum(1 for load in day_loads if load["total_heating"] > 0)
|
832 |
+
# Apply daily control
|
833 |
+
for load in day_loads:
|
834 |
+
if cooling_hours > heating_hours:
|
835 |
+
load["total_heating"] = 0 # Keep cooling components, zero heating total
|
836 |
+
elif heating_hours > cooling_hours:
|
837 |
+
load["total_cooling"] = 0 # Keep heating components, zero cooling total
|
838 |
+
else: # Equal hours
|
839 |
+
load["total_cooling"] = 0
|
840 |
+
load["total_heating"] = 0 # Zero both totals, keep components
|
841 |
+
final_loads.append(load)
|
842 |
+
return final_loads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|