sadickam commited on
Commit
e0bab69
Β·
verified Β·
1 Parent(s): fb16d84

Upload 9 files

Browse files
Files changed (9) hide show
  1. .gitattributes +35 -0
  2. README.md +13 -0
  3. app.py +52 -0
  4. config.py +44 -0
  5. dots_graph2.jpg +0 -0
  6. helpers.py +72 -0
  7. report.py +72 -0
  8. requirements.txt +14 -0
  9. sections.py +681 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Building Acoustics Analysis TestLab
3
+ emoji: πŸ“ˆ
4
+ colorFrom: indigo
5
+ colorTo: pink
6
+ sdk: streamlit
7
+ sdk_version: 1.37.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ─────────────────────────────────────────────────────────────────────────────
2
+ # Building Acoustics Analysis Tool Β· Streamlit 1.35
3
+ # RT60 Β· Background-Noise Β· Speech-Intelligibility
4
+ # Version: V4-2025
5
+ # Date: July 2025
6
+ # ─────────────────────────────────────────────────────────────────────────────
7
+
8
+ import streamlit as st
9
+ from config import MAJOR_TABS, DEFAULTS
10
+ from sections import (
11
+ section_instructions, section_initial_data, section_initial_checks,
12
+ section_acoustic_treatment, section_final_checks, section_faq,
13
+ nav_to, nav_buttons
14
+ )
15
+ from report import generate_docx
16
+
17
+ # ── page config (unchanged) ────────────────────────────────────────────────
18
+ st.set_page_config("Building Acoustics Analysis Tool", "🏫",
19
+ layout="wide", initial_sidebar_state="expanded")
20
+
21
+ # ── ensure session-state keys exist ────────────────────────────────────────
22
+ for k, v in DEFAULTS.items():
23
+ st.session_state.setdefault(k, v)
24
+
25
+ # ── sidebar navigation ─────────────────────────────────────────────────────
26
+ with st.sidebar:
27
+ st.header("Navigation")
28
+ for tab in MAJOR_TABS:
29
+ st.button(tab, on_click=nav_to, args=(tab,))
30
+ st.markdown("---")
31
+ st.write("Version: V4-2025")
32
+ if st.session_state.major_tab == "Final Compliance Checks":
33
+ st.download_button("πŸ“₯ Word Report",
34
+ generate_docx(),
35
+ "Acoustics_Report.docx",
36
+ "application/vnd.openxmlformats-officedocument."
37
+ "wordprocessingml.document")
38
+
39
+ # ── router ─────────────────────────────────────────────────────────────────
40
+ ROUTES = {
41
+ "Instructions": section_instructions,
42
+ "Initial Data Entry": section_initial_data,
43
+ "Initial Compliance Checks": section_initial_checks,
44
+ "Acoustic Treatment": section_acoustic_treatment,
45
+ "Final Compliance Checks": section_final_checks,
46
+ "FAQ / Help": section_faq,
47
+ }
48
+ ROUTES[st.session_state.major_tab]()
49
+
50
+ # ── footer ─────────────────────────────────────────────────────────────────
51
+ st.write("---")
52
+ st.write("Developed by Dr Abdul-Manan Sadick Β· Deakin University Β· 2025")
config.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Global constants and initial session-state defaults."""
2
+ from typing import List
3
+ import pandas as pd
4
+
5
+ FREQUENCIES: List[int] = [125, 250, 500, 1000, 2000, 4000]
6
+ TOTAL_DOTS = 200
7
+ AI_BANDS = {
8
+ (0.00, 0.24): "None",
9
+ (0.25, 0.40): "Fair",
10
+ (0.41, 0.60): "Good",
11
+ (0.61, 1.00): "Excellent",
12
+ }
13
+ MAJOR_TABS = [
14
+ "Instructions",
15
+ "Initial Data Entry",
16
+ "Initial Compliance Checks",
17
+ "Acoustic Treatment",
18
+ "Final Compliance Checks",
19
+ "FAQ / Help",
20
+ ]
21
+
22
+ # ── Streamlit-session defaults ────────────────────────────────────────────
23
+ DEFAULTS = dict(
24
+ major_tab=MAJOR_TABS[0],
25
+ # uploads / inputs
26
+ df_current_rt=None, df_existing_mat=None, room_volume=0.0,
27
+ df_background_noise=pd.DataFrame(columns=["Location", "dBA"]),
28
+ bn_input_loc="", bn_input_val=0.0,
29
+ df_spl=None,
30
+ # compliance params
31
+ rt_min=0.0, rt_max=0.0, bn_min=0.0, bn_max=0.0,
32
+ # multi-location AI dictionaries
33
+ dots_init_dict={}, ai_init_dict={},
34
+ dots_final_dict={}, ai_final_dict={},
35
+ # acoustic-treatment data
36
+ desired_rt_df=pd.DataFrame(
37
+ {"Frequency": FREQUENCIES, "Desired RT60": [0.01]*6}
38
+ ),
39
+ df_new_mat=None,
40
+ # derived absorption & figures
41
+ current_absorption={}, new_absorption={},
42
+ fig_rt_initial=None, fig_bn_initial=None,
43
+ fig_rt_final=None, fig_bn_final=None,
44
+ )
dots_graph2.jpg ADDED
helpers.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utility functions shared by all modules."""
2
+ import io, re, numpy as np, pandas as pd
3
+ import plotly.graph_objects as go
4
+ import streamlit as st
5
+ from config import FREQUENCIES, TOTAL_DOTS, AI_BANDS
6
+
7
+ # ── misc helpers ───────────────────────────────────────────────────────────
8
+ def slugify(txt: str) -> str:
9
+ return re.sub(r"[^0-9a-zA-Z_]+", "_", txt)
10
+
11
+ def standardise_freq_cols(df: pd.DataFrame) -> pd.DataFrame:
12
+ m = {"125Hz": "125", "250Hz": "250", "500Hz": "500", "1000Hz": "1000",
13
+ "1KHz": "1000", "2KHz": "2000", "4KHz": "4000"}
14
+ df.columns = [m.get(str(c).replace(" Hz", "").replace("KHz", "000").strip(),
15
+ str(c).strip()) for c in df.columns]
16
+ df.columns = pd.to_numeric(df.columns, errors="ignore")
17
+ return df
18
+
19
+ def validate_numeric(df): # True if all numeric
20
+ return not df.empty and df.applymap(np.isreal).all().all()
21
+
22
+ @st.cache_data(show_spinner=False)
23
+ def read_upload(upload, *, header=0, index_col=None):
24
+ raw = upload.getvalue()
25
+ if upload.name.endswith(".csv"):
26
+ return pd.read_csv(io.BytesIO(raw), header=header, index_col=index_col)
27
+ return pd.read_excel(io.BytesIO(raw), header=header, index_col=index_col)
28
+
29
+ def calc_abs_area(volume_m3, rt_s):
30
+ return float("inf") if rt_s == 0 else 0.16 * volume_m3 / rt_s
31
+
32
+ # ── plotting helpers ───────────────────────────────────────────────────────
33
+ def plot_rt_band(y_cur, y_min, y_max, title):
34
+ f = go.Figure()
35
+ f.add_trace(go.Scatter(x=FREQUENCIES, y=y_cur, mode="lines+markers",
36
+ name="Current", marker_color="#1f77b4"))
37
+ f.add_trace(go.Scatter(x=FREQUENCIES, y=y_max, mode="lines",
38
+ name="Max Std", line=dict(dash="dash", color="#ff7f0e")))
39
+ f.add_trace(go.Scatter(x=FREQUENCIES, y=y_min, mode="lines",
40
+ name="Min Std", line=dict(dash="dash", color="#2ca02c"),
41
+ fill="tonexty", fillcolor="rgba(44,160,44,0.15)"))
42
+ f.update_layout(template="plotly_white", title=title,
43
+ xaxis_title="Frequency (Hz)",
44
+ yaxis_title="Reverberation Time (s)",
45
+ legend=dict(orientation="h", y=-0.2))
46
+ return f
47
+
48
+ def plot_bn_band(x, y_meas, y_min, y_max, title):
49
+ f = go.Figure()
50
+ f.add_trace(go.Bar(x=x, y=y_meas, name="Measured",
51
+ marker_color="#1f77b4", opacity=0.6))
52
+ f.add_shape(type="rect", x0=-.5, x1=len(x)-.5, y0=y_min, y1=y_max,
53
+ fillcolor="rgba(255,0,0,0.15)", line=dict(width=0), layer="below")
54
+ for y, c, lbl in [(y_max, "#ff0000", "Max Std"),
55
+ (y_min, "#ff0000", "Min Std")]:
56
+ f.add_shape(type="line", x0=-.5, x1=len(x)-.5, y0=y, y1=y,
57
+ line=dict(color=c, dash="dash"))
58
+ f.add_trace(go.Scatter(x=[None], y=[None], mode="lines",
59
+ line=dict(color=c, dash="dash"),
60
+ showlegend=True, name=lbl))
61
+ f.update_layout(template="plotly_white", title=title,
62
+ xaxis_title="Location", yaxis_title="Sound Level (dBA)",
63
+ legend=dict(orientation="h", y=-0.2))
64
+ return f
65
+
66
+ # ── speech-intelligibility ─────────────────────────────────────────────────
67
+ def articulation_index(dots: int):
68
+ ai = dots / TOTAL_DOTS
69
+ for (lo, hi), lbl in AI_BANDS.items():
70
+ if lo <= ai <= hi:
71
+ return ai, lbl
72
+ return ai, "Out of range"
report.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Generate the downloadable Word report."""
2
+ import io, tempfile
3
+ from docx import Document
4
+ from docx.shared import Inches
5
+ import streamlit as st
6
+ from config import FREQUENCIES
7
+ from helpers import calc_abs_area
8
+
9
+ def generate_docx() -> bytes:
10
+ doc = Document()
11
+ doc.add_heading("Room Acoustics Analysis Report", 0)
12
+
13
+ # 1 ─ Input data
14
+ doc.add_heading("1 Input Data", 1)
15
+ doc.add_paragraph(f"Room volume: {st.session_state.room_volume:.2f} mΒ³")
16
+
17
+ if st.session_state.df_current_rt is not None:
18
+ doc.add_heading("Current Reverberation Time", 2)
19
+ doc.add_paragraph(st.session_state.df_current_rt.to_string(index=False))
20
+
21
+ if st.session_state.df_existing_mat is not None:
22
+ doc.add_heading("Existing Materials – Coefficients & Areas", 2)
23
+ doc.add_paragraph(st.session_state.df_existing_mat.to_string(index=False))
24
+
25
+ if not st.session_state.df_background_noise.empty:
26
+ doc.add_heading("Background-Noise Measurements", 2)
27
+ doc.add_paragraph(st.session_state.df_background_noise.to_string(index=False))
28
+
29
+ if st.session_state.df_spl is not None:
30
+ doc.add_heading("Sound-Pressure Levels (SPL)", 2)
31
+ doc.add_paragraph(st.session_state.df_spl.to_string())
32
+
33
+ # 2 ─ Speech-intelligibility (Dots & AI)
34
+ doc.add_heading("2 Speech-Intelligibility (Dots & AI)", 1)
35
+
36
+ if st.session_state.dots_init_dict:
37
+ doc.add_heading("Initial Compliance Check", 2)
38
+ for loc, dots in st.session_state.dots_init_dict.items():
39
+ ai, interp = st.session_state.ai_init_dict.get(loc, (None, ""))
40
+ line = f"{loc}: Dots = {dots}"
41
+ if ai is not None:
42
+ line += f" β†’ AI = {ai:.2f} ({interp})"
43
+ doc.add_paragraph(line)
44
+
45
+ if st.session_state.dots_final_dict:
46
+ doc.add_heading("Final Compliance Check", 2)
47
+ for loc, dots in st.session_state.dots_final_dict.items():
48
+ ai, interp = st.session_state.ai_final_dict.get(loc, (None, ""))
49
+ line = f"{loc}: Dots = {dots}"
50
+ if ai is not None:
51
+ line += f" β†’ AI = {ai:.2f} ({interp})"
52
+ doc.add_paragraph(line)
53
+
54
+ # 3 ─ Figures
55
+ doc.add_heading("3 Figures", 1)
56
+
57
+ def _add(fig, caption):
58
+ if fig is None: return
59
+ with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
60
+ fig.write_image(tmp.name, scale=4)
61
+ doc.add_picture(tmp.name, width=Inches(6))
62
+ doc.paragraphs[-1].alignment = 1
63
+ doc.add_paragraph(caption, style="Caption")
64
+
65
+ _add(st.session_state.fig_rt_initial, "Fig 1 Initial RT60 vs Standard Range")
66
+ _add(st.session_state.fig_bn_initial, "Fig 2 Initial Background-Noise vs Standard Range")
67
+ _add(st.session_state.fig_rt_final, "Fig 3 Final RT60 vs Standard Range")
68
+ _add(st.session_state.fig_bn_final, "Fig 4 Final Background-Noise vs Standard Range")
69
+
70
+ buf = io.BytesIO()
71
+ doc.save(buf)
72
+ return buf.getvalue()
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Core web-app stack
2
+ streamlit==1.35.0
3
+ plotly==5.20.0
4
+ kaleido==0.2.1
5
+
6
+ # Data analysis
7
+ pandas==2.2.2
8
+ numpy==1.26.4
9
+ openpyxl==3.1.2
10
+
11
+ # Word-report generation
12
+ python-docx==1.1.0
13
+
14
+ altair<5
sections.py ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ sections.py
3
+ ===========
4
+
5
+ All Streamlit UI page/section functions for the Building Acoustics Analysis
6
+ Tool. No functional changes have been introduced.
7
+ """
8
+ from __future__ import annotations
9
+
10
+ # ── third-party ────────────────────────────────────────────────────────────
11
+ import numpy as np
12
+ import pandas as pd
13
+ import plotly.graph_objects as go
14
+ import streamlit as st
15
+
16
+ # ── local imports ───────────────────────────────────────────────────────────
17
+ from config import FREQUENCIES, MAJOR_TABS, TOTAL_DOTS
18
+ from helpers import (
19
+ slugify,
20
+ standardise_freq_cols,
21
+ validate_numeric,
22
+ read_upload,
23
+ calc_abs_area,
24
+ plot_rt_band,
25
+ plot_bn_band,
26
+ articulation_index,
27
+ )
28
+
29
+ # ────────────────────────────────────────────────────────────────────────────
30
+ # Navigation helpers (used by several sections)
31
+ # ────────────────────────────────────────────────────────────────────────────
32
+ def nav_to(tab: str) -> None:
33
+ """Switch the major tab in session-state."""
34
+ st.session_state.major_tab = tab
35
+
36
+
37
+ def nav_buttons() -> None:
38
+ """Render ← / β†’ buttons with explicit section names."""
39
+ idx = MAJOR_TABS.index(st.session_state.major_tab)
40
+ c1, _, c3 = st.columns([2, 6, 2])
41
+ if idx > 0:
42
+ c1.button(f"← {MAJOR_TABS[idx-1]}", on_click=nav_to,
43
+ args=(MAJOR_TABS[idx-1],))
44
+ if idx < len(MAJOR_TABS) - 1:
45
+ c3.button(f"{MAJOR_TABS[idx+1]} β†’", on_click=nav_to,
46
+ args=(MAJOR_TABS[idx+1],))
47
+
48
+ # ────────────────────────────────────────────────────────────────────────────
49
+ # Individual sections (exact logic preserved)
50
+ # ────────────────────────────────────────────────────────────────────────────
51
+ def section_instructions() -> None:
52
+ st.title("πŸ”Š Building Acoustics Analysis Tool")
53
+
54
+ with st.expander("App Information", expanded=False):
55
+ st.write("""
56
+ - Welcome to the Building Acoustics Analysis Tool.
57
+ - This app was developed to help Deakin University Construction Management students complete a building acoustics assignment in SRT757 Building Systems and Environment.
58
+ - This app is intended for a retrofitting task and assumes that you have measured the current reverberation of the room to be assessed.
59
+ - The app helps to analyze and modify room reverberation times to fall within standard ranges using the Sabine equation.
60
+ - This app is intended for educational purposes only and should not be used for professional purposes.
61
+ """)
62
+
63
+ # Example DataFrames
64
+ df_current_reverberation_times = pd.DataFrame({
65
+ '125': [0.8], '250': [0.7], '500': [0.6],
66
+ '1000': [0.5], '2000': [0.4], '4000': [0.3]
67
+ })
68
+
69
+ df_existing_materials = pd.DataFrame({
70
+ 'Material Name': ['Carpet', 'Curtain'],
71
+ 'Area_No': [50, 30],
72
+ '125': [0.1, 0.2], '250': [0.15, 0.25], '500': [0.2, 0.3],
73
+ '1000': [0.3, 0.35], '2000': [0.4, 0.45], '4000': [0.5, 0.55]
74
+ })
75
+
76
+ df_new_materials = pd.DataFrame({
77
+ 'Material Name': ['Acoustic Panel', 'Foam'],
78
+ 'Area_No': [40, 20],
79
+ '125': [0.3, 0.25], '250': [0.35, 0.3], '500': [0.4, 0.35],
80
+ '1000': [0.45, 0.4], '2000': [0.5, 0.45], '4000': [0.6, 0.55]
81
+ })
82
+
83
+ df_sound_pressure_levels = pd.DataFrame({
84
+ 'Location': ['Location 1', 'Location 2'],
85
+ '125': [60, 62], '250': [58, 59], '500': [55, 56],
86
+ '1000': [52, 53], '2000': [50, 51], '4000': [48, 49]
87
+ })
88
+
89
+ st.write("## Instructions")
90
+
91
+ st.markdown("""
92
+ Welcome to the **Building Acoustics Analysis Tool**. This educational application supports students in analyzing and improving room acoustics by addressing:
93
+ - **Reverberation Time (RT60)**
94
+ - **Background Noise**
95
+ - **Speech Intelligibility (Articulation Index)**
96
+
97
+ The tool is structured around Sabine's theory and common acoustic assessment standards, using six standard frequencies (125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz). It is designed to help users diagnose and treat acoustic deficiencies by uploading and modifying material and noise-related inputs.
98
+
99
+ ⚠️ **Note:** This tool is intended for educational purposes and should not be used for professional certification or compliance without additional verification.
100
+
101
+ ### Reverberation Time (RT60)
102
+ RT60 represents the time required for a sound to decay by 60 dB after the source stops. An optimal RT60 enhances clarity and acoustic comfort:
103
+ - **Short RT60**: Suitable for classrooms, meeting rooms, and lecture halls.
104
+ - **Longer RT60**: More acceptable in concert halls and religious buildings.
105
+
106
+ #### RT60 Calculation – Sabine’s Equation
107
+ **RT60 = (0.16 Γ— V) / A**
108
+
109
+ Where:
110
+ - `V` = Room volume (mΒ³)
111
+ - `A` = Total absorption (mΒ² Sabins)
112
+
113
+ **Example**:
114
+ If a 100 mΒ³ room has total absorption of 10 mΒ²:
115
+ **RT60 = (0.16 Γ— 100) / 10 = 1.60 seconds**
116
+
117
+ ### Background Noise
118
+ Background noise refers to ambient sound levels in a room, typically measured in **dBA**. Excessive background noise can mask speech and reduce communication effectiveness, even in acoustically treated rooms.
119
+
120
+ The app allows users to enter measured **background noise levels** for one or more locations and compare them with recommended standard ranges. You can visualize these using bar plots and identify areas needing improvement.
121
+
122
+ - **Sources**: HVAC systems, outside traffic, or adjacent room activities.
123
+ - **Goal**: Maintain noise levels within acceptable limits (as defined by relevant standards).
124
+
125
+ ### Speech Intelligibility
126
+ Speech intelligibility is the measure of how clearly speech can be understood within a room. This tool uses the **Articulation Index (AI)** method:
127
+ - Based on β€œDots Above a Curve” from sound pressure level data
128
+ - User inputs number of audible speech "dots" above noise thresholds
129
+ - AI is computed and interpreted (None, Fair, Good, Excellent)
130
+
131
+ Higher AI scores suggest better speech transmission. This measure is particularly important in educational, healthcare, and public spaces.
132
+
133
+ ### App Functionality
134
+ The app guides users through six key stages:
135
+ 1. **Initial Data Entry** – Upload baseline acoustic data (RT60, materials, background noise, SPL).
136
+ 2. **Initial Compliance Checks** – Review current RT60, noise levels, and speech intelligibility.
137
+ 3. **Desired RT60** – Define preferred RT60 per frequency to guide treatment.
138
+ 4. **Acoustic Treatment** – Add new materials to adjust absorption.
139
+ 5. **Final Compliance Checks** – Evaluate impact on RT60, noise, and intelligibility.
140
+ 6. **FAQ / Help** – Access help content and export a summary report.
141
+
142
+ ### Formatting Input Data
143
+
144
+ ⚠️ **Use CSV or Excel, following the formats shown below without.**
145
+
146
+ #### Current Reverberation Times
147
+ - **Format**: One row, column headers = frequencies
148
+ """)
149
+ st.write(df_current_reverberation_times)
150
+
151
+ st.markdown("""
152
+ #### Existing Materials – Absorption Coefficients and Areas
153
+ - **Format**: Material name, surface area, absorption coefficients
154
+ """)
155
+ st.write(df_existing_materials)
156
+
157
+ st.markdown("""
158
+ #### New Materials – Absorption Coefficients and Areas
159
+ - **Format**: Same structure as existing materials
160
+ """)
161
+ st.write(df_new_materials)
162
+
163
+ st.markdown("""
164
+ #### Sound Pressure Levels (SPL)
165
+ - **Format**: Location name in first column; SPLs at frequencies as columns
166
+ """)
167
+ st.write(df_sound_pressure_levels)
168
+
169
+ st.markdown("""
170
+ ### Navigation Summary
171
+
172
+ - **Instructions** – You are here. Read all information before starting.
173
+ - **Initial Data Entry** – Upload all your acoustic data. Room volume, RT60, background noise, and SPLs are required.
174
+ - **Initial Compliance Checks** – Visualize current RT60, compare background noise with limits, and assess initial speech intelligibility.
175
+ - **Desired RT60** – Define target reverberation levels per frequency. This guides treatment planning.
176
+ - **Acoustic Treatment** – Upload and experiment with new materials to modify absorption and reduce noise.
177
+ - **Final Compliance Checks** – Review the combined impact of old and new materials on RT60, noise, and speech clarity.
178
+
179
+ ### General Tips
180
+ - Keep filenames and headings clean and consistent.
181
+ - Use the six standard frequencies.
182
+ - Adjust materials iteratively to achieve compliance.
183
+ - Download your report after completing all sections.
184
+
185
+ For further clarification or examples, please consult the FAQ tab or contact your instructor.
186
+ """)
187
+ st.info("After reviewing the instructions, proceed to the **Initial Data Entry** tab.")
188
+
189
+ nav_buttons()
190
+
191
+
192
+ # ---------------------------------------------------------------------------
193
+ def section_initial_data() -> None:
194
+ st.title("πŸ”Š Building Acoustics Analysis Tool")
195
+
196
+ with st.expander("App Information", expanded=False):
197
+ st.write("""
198
+ - This app is intended for educational purposes only and should not be used for professional purposes.
199
+ """)
200
+
201
+ st.header("πŸ“₯ Initial Data Entry")
202
+ t_rt, t_bn, t_si = st.tabs(
203
+ ["Reverberation Time", "Background Noise", "Speech Intelligibility"])
204
+
205
+ # ── RT60 + materials ───────────────────────────────────────────────────
206
+ with t_rt:
207
+
208
+ st.write('''The primary objective here is to provide all the initial input data needed to
209
+ start RT60 analysis. See the 'Instructions' on the left for formatting information.''')
210
+
211
+ c1, c2 = st.columns(2)
212
+ u_rt = c1.file_uploader("Current RT60 data (CSV/XLSX)", type=["csv", "xlsx"])
213
+ if u_rt:
214
+ df = standardise_freq_cols(read_upload(u_rt))
215
+ st.session_state.df_current_rt = df if validate_numeric(df) else None
216
+
217
+ u_mat = c2.file_uploader("Existing materials (CSV/XLSX)",
218
+ type=["csv", "xlsx"])
219
+ if u_mat:
220
+ dfm = standardise_freq_cols(read_upload(u_mat))
221
+ st.session_state.df_existing_mat = (
222
+ dfm if validate_numeric(dfm.iloc[:, 2:]) else None
223
+ )
224
+
225
+ st.session_state.room_volume = st.number_input(
226
+ "Room volume [mΒ³]",
227
+ value=st.session_state.room_volume,
228
+ min_value=0.0,
229
+ step=0.1,
230
+ )
231
+
232
+ # warnings
233
+ if st.session_state.df_current_rt is None:
234
+ st.warning("⚠️ Upload *Current RT60* data.")
235
+ if st.session_state.df_existing_mat is None:
236
+ st.warning("⚠️ Upload *Existing Materials* data.")
237
+ if st.session_state.room_volume == 0:
238
+ st.warning("⚠️ Enter a non-zero room volume.")
239
+
240
+ if st.session_state.df_current_rt is not None:
241
+ st.dataframe(st.session_state.df_current_rt, use_container_width=True)
242
+ if st.session_state.df_existing_mat is not None:
243
+ st.dataframe(st.session_state.df_existing_mat, use_container_width=True)
244
+
245
+ # ── Background noise ───────────────────────────────────────────────────
246
+ with t_bn:
247
+
248
+ st.write('''The primary objective here is to provide the initial input data needed to
249
+ start background noise analysis. See the 'Instructions' on the left for formatting information''')
250
+
251
+ c1, c2, c3 = st.columns([3, 2, 1])
252
+ st.session_state.bn_input_loc = c1.text_input(
253
+ "Location", st.session_state.bn_input_loc)
254
+ st.session_state.bn_input_val = c2.number_input(
255
+ "dBA", value=st.session_state.bn_input_val, min_value=0.0, step=0.1)
256
+
257
+ if c3.button("Add / Update"):
258
+ loc = st.session_state.bn_input_loc.strip()
259
+ if loc:
260
+ df = st.session_state.df_background_noise
261
+ if loc in df["Location"].values:
262
+ df.loc[df["Location"] == loc, "dBA"] = st.session_state.bn_input_val
263
+ else:
264
+ df.loc[len(df)] = [loc, st.session_state.bn_input_val]
265
+ st.session_state.df_background_noise = df
266
+
267
+ if st.session_state.df_background_noise.empty:
268
+ st.warning("⚠️ Enter at least one background-noise measurement.")
269
+
270
+ st.dataframe(st.session_state.df_background_noise, use_container_width=True)
271
+
272
+ # ── SPL upload ─────────────────────────────────────────────────────────
273
+ with t_si:
274
+
275
+ st.write('''The primary objective here is to provide the initial input data needed to
276
+ start speech intelligibility analysis. See the 'Instructions' on the left for
277
+ formatting information''')
278
+
279
+ u = st.file_uploader("Current sound pressure level data (CSV/XLSX)", type=["csv", "xlsx"])
280
+ if u:
281
+ df = standardise_freq_cols(read_upload(u, header=0, index_col=0))
282
+ df.columns = [int(c) for c in df.columns]
283
+ st.session_state.df_spl = (
284
+ df if set(df.columns) >= set(FREQUENCIES) else None
285
+ )
286
+ # reset AI dicts on new upload
287
+ st.session_state.dots_init_dict, st.session_state.ai_init_dict = {}, {}
288
+ st.session_state.dots_final_dict, st.session_state.ai_final_dict = {}, {}
289
+
290
+ if st.session_state.df_spl is None:
291
+ st.warning("⚠️ Upload *SPL* data with columns 125–4000 Hz.")
292
+ else:
293
+ st.dataframe(st.session_state.df_spl, use_container_width=True)
294
+
295
+ nav_buttons()
296
+
297
+
298
+ # ---------------------------------------------------------------------------
299
+ def section_initial_checks() -> None:
300
+ st.title("πŸ”Š Building Acoustics Analysis Tool")
301
+
302
+ with st.expander("App Information", expanded=False):
303
+ st.write("""
304
+ - This app is intended for educational purposes only and should not be used for professional purposes.
305
+ """)
306
+
307
+ st.header("βœ… Initial Compliance Checks")
308
+ st.write("""The purpose of initial complaince checks to verify if the acoustic properties
309
+ of the space complies with standards. If the space complies, acoustic treatment may not
310
+ be required. """)
311
+ t_rt, t_bn, t_si = st.tabs(
312
+ ["Reverberation Time", "Background Noise", "Speech Intelligibility"])
313
+
314
+ # early global warnings
315
+ if (st.session_state.df_current_rt is None or
316
+ st.session_state.df_existing_mat is None):
317
+ st.warning("⚠️ Current RT60 and/or Materials data missing "
318
+ "(see *Initial Data Entry*).")
319
+ if st.session_state.df_background_noise.empty:
320
+ st.warning("⚠️ Background-noise data missing "
321
+ "(see *Initial Data Entry*).")
322
+ if st.session_state.df_spl is None:
323
+ st.warning("⚠️ Sound pressure level (SPL) data missing (see *Initial Data Entry*).")
324
+
325
+ # ── RT60 check ─────────────────────────────────────────────────────────
326
+ with t_rt:
327
+ st.write("""Privide the min and max standard RT60 for your space type to complete
328
+ initial RT60 compliance check.""")
329
+ c1, c2 = st.columns(2)
330
+ st.session_state.rt_min = c1.number_input(
331
+ "Min standard RT60 [s]", value=st.session_state.rt_min, min_value=0.0, step=0.01)
332
+ st.session_state.rt_max = c2.number_input(
333
+ "Max standard RT60 [s]", value=st.session_state.rt_max, min_value=0.0, step=0.01)
334
+
335
+ if st.session_state.rt_max <= st.session_state.rt_min:
336
+ st.warning("⚠️ Max RT60 must be greater than Min RT60.")
337
+
338
+ if st.session_state.df_existing_mat is not None:
339
+ @st.cache_data(show_spinner=False)
340
+ def _abs(df):
341
+ acc = {f: 0.0 for f in FREQUENCIES}
342
+ for _, r in df.iterrows():
343
+ area = r[1]
344
+ for f, coeff in zip(FREQUENCIES, r[2:]):
345
+ acc[f] += coeff * area
346
+ return acc
347
+
348
+ st.markdown("""###### Sound absorption based initial matrials""")
349
+ st.session_state.current_absorption = _abs(
350
+ st.session_state.df_existing_mat)
351
+ st.dataframe(pd.DataFrame([st.session_state.current_absorption]),
352
+ use_container_width=True)
353
+
354
+ if (st.session_state.df_current_rt is not None and
355
+ st.session_state.rt_max > st.session_state.rt_min):
356
+ y_cur = [float(st.session_state.df_current_rt.iloc[0][f])
357
+ for f in FREQUENCIES]
358
+ fig = plot_rt_band(
359
+ y_cur,
360
+ [st.session_state.rt_min]*6,
361
+ [st.session_state.rt_max]*6,
362
+ "Initial RT60 vs Standard RT60 Range",
363
+ )
364
+ st.plotly_chart(fig, use_container_width=True)
365
+ st.session_state.fig_rt_initial = fig
366
+
367
+ # ── Background noise check ─────────────────────────────────────────────
368
+ with t_bn:
369
+ st.write("""Provide the min and max standard background noise for your space type to
370
+ complete complaince check.""")
371
+ c1, c2 = st.columns(2)
372
+ st.session_state.bn_min = c1.number_input(
373
+ "Min standard background noise [dBA]", value=st.session_state.bn_min, min_value=0.0, step=0.1)
374
+ st.session_state.bn_max = c2.number_input(
375
+ "Max standard background noise [dBA]", value=st.session_state.bn_max, min_value=0.0, step=0.1)
376
+
377
+ if st.session_state.bn_max <= st.session_state.bn_min:
378
+ st.warning("⚠️ Max background noise must be greater than Min background noise.")
379
+
380
+ df = st.session_state.df_background_noise
381
+ if (not df.empty and st.session_state.bn_max > st.session_state.bn_min):
382
+ fig = plot_bn_band(
383
+ df["Location"], df["dBA"],
384
+ st.session_state.bn_min, st.session_state.bn_max,
385
+ "Initial Background Noise vs Standard Background Noise Range",
386
+ )
387
+ st.plotly_chart(fig, use_container_width=True)
388
+ st.session_state.fig_bn_initial = fig
389
+
390
+ # ── Speech-intelligibility check ───────────────────────────────────────
391
+ with t_si:
392
+ col_text, col_img = st.columns([3,2])
393
+ with col_text:
394
+ st.write("""Manually plot the sound pressure values below on the dots graph
395
+ (see Fig 1) and count the dots above the line for
396
+ articluation index calculation below. You must plot a dot graph for each
397
+ location in the sound pressure levels table below.""")
398
+
399
+ if st.session_state.df_spl is not None:
400
+ st.markdown("###### current sound pressure levels")
401
+ st.dataframe(st.session_state.df_spl, use_container_width=True)
402
+
403
+ with col_img:
404
+ st.image("dots_graph2.jpg", caption="Fig 1: Dots graph",
405
+ use_column_width=False)
406
+
407
+ if st.session_state.df_spl is not None:
408
+ # st.markdown("###### current sound pressure levels")
409
+ # st.dataframe(st.session_state.df_spl, use_container_width=True)
410
+ ai_rows = []
411
+ st.markdown("###### Articulation Index (AI) calculation")
412
+ for loc in st.session_state.df_spl.index:
413
+ key = slugify(f"dots_init_{loc}")
414
+ default = st.session_state.dots_init_dict.get(loc, 0)
415
+ dots = st.number_input(
416
+ f"Dots above ({loc})", 0, TOTAL_DOTS,
417
+ step=1, value=default, key=key)
418
+ st.session_state.dots_init_dict[loc] = dots
419
+ ai, interp = articulation_index(dots) if dots else (None, "")
420
+ st.session_state.ai_init_dict[loc] = (ai, interp)
421
+ ai_rows.append({
422
+ "Location": loc,
423
+ "Articulation Index (AI)": f"{ai:.2f}" if ai is not None else "",
424
+ "Interpretation": interp,
425
+ })
426
+ st.dataframe(pd.DataFrame(ai_rows), use_container_width=True)
427
+
428
+ nav_buttons()
429
+
430
+ # ---------------------------------------------------------------------------
431
+ def section_acoustic_treatment() -> None:
432
+ st.title("πŸ”Š Building Acoustics Analysis Tool")
433
+
434
+ with st.expander("App Information", expanded=False):
435
+ st.write("""
436
+ - This app is intended for educational purposes only and should not be used for professional purposes.
437
+ """)
438
+
439
+ st.header("πŸ›  Acoustic Treatment")
440
+ tab_desired, tab_mat = st.tabs(["Desired RT60", "New Materials"])
441
+
442
+ # ── Desired RT60 entry ─────────────────────────────────────────────────
443
+ with tab_desired:
444
+
445
+ st.write('''At this point in the analysis, you would need to define your desired RT60,
446
+ which would be used to calculate the desired sound absorption needed to achieve the
447
+ desired RT60. Compare the total frequency values in the table below to the calculated current
448
+ room sound absorption on the Initial RT60 Compliance Check tab to inform your selection
449
+ of new materials in the next step of the analysis''')
450
+
451
+ if st.session_state.rt_max == 0:
452
+ st.warning("⚠️ Define RT60 standard range in *Initial Compliance Checks* first.")
453
+
454
+ st.info("Enter the desired RT60 for each frequency.")
455
+ desired = {}
456
+ for freq in FREQUENCIES:
457
+ default = float(
458
+ st.session_state.desired_rt_df[
459
+ st.session_state.desired_rt_df["Frequency"] == freq
460
+ ]["Desired RT60"].values[0]
461
+ )
462
+ val = st.number_input(
463
+ f"{freq} Hz", min_value=0.01, step=0.01,
464
+ value=default, key=f"des_rt_{freq}")
465
+ desired[freq] = val
466
+
467
+ st.session_state.desired_rt_df["Desired RT60"] = (
468
+ st.session_state.desired_rt_df["Frequency"].map(desired)
469
+ )
470
+
471
+ within = all(
472
+ st.session_state.rt_min <= v <= st.session_state.rt_max
473
+ for v in desired.values()
474
+ )
475
+ if within:
476
+ df_abs = pd.DataFrame([{
477
+ f: calc_abs_area(st.session_state.room_volume, v)
478
+ for f, v in desired.items()
479
+ }], index=["Required absorption"])
480
+ st.markdown("###### Sound absorption based on Desired RT60")
481
+ st.dataframe(df_abs, use_container_width=True)
482
+ else:
483
+ st.error("Each Desired RT60 must lie within the standard range.")
484
+
485
+ if st.session_state.room_volume == 0:
486
+ st.warning("⚠️ Enter a non-zero room volume (see *Initial Data Entry*).")
487
+
488
+ # ── New materials ──────────────────────────────────────────────────────
489
+ with tab_mat:
490
+
491
+ st.write("""The desired sound absorption calculated on the Desired RT60 tab is the target
492
+ sound absorption you are aiming to achieve. You now have to start working towards achieving
493
+ the target absorptions. Based on the differences between the desired sound absorptions
494
+ (see Desired RT60 tab) and the calculated current room sound absorptions
495
+ (see Initial RT60 Compliance Check tab), you would need to introduce new materials to either
496
+ increase or decrease sound absorption for some frequencies. Note that sound absorption
497
+ coefficients of a material are not the same for all frequencies. Therefore, you need to
498
+ strategically select your materials. You may need to repeat the material selection process
499
+ several times to ensure that the room passes the final RT60 compliance check.
500
+ Your project brief may place limitations on the number of structural changes
501
+ (like changing the wall or concrete floor) you are allowed to make. For a retrofit project,
502
+ you can change non-structural elements like carpet and ceiling tiles. Additionally, you
503
+ can introduce new materials like curtains.
504
+ """)
505
+
506
+
507
+ u = st.file_uploader("New materials data (CSV/XLSX)", type=["csv", "xlsx"])
508
+ if u:
509
+ st.session_state.df_new_mat = standardise_freq_cols(read_upload(u))
510
+
511
+ if st.session_state.df_new_mat is None:
512
+ st.warning("⚠️ Upload or add at least one new material.")
513
+ else:
514
+ st.info("""You can add or delete rows and modify the values in the table below.
515
+ Changes will be applied and will instantly impact sound absorption
516
+ and Final Compliance Checks.""")
517
+
518
+ df_edit = st.data_editor(
519
+ st.session_state.df_new_mat, num_rows="dynamic",
520
+ use_container_width=True, key="edit_newmat")
521
+ st.session_state.df_new_mat = df_edit
522
+
523
+ new_abs = {f: 0.0 for f in FREQUENCIES}
524
+ for _, r in df_edit.iterrows():
525
+ area = r[1]
526
+ for f, coeff in zip(FREQUENCIES, r[2:]):
527
+ new_abs[f] += coeff * area
528
+ st.session_state.new_absorption = new_abs
529
+ st.markdown("###### Sound absorption based on new materials")
530
+ st.dataframe(pd.DataFrame([new_abs], index=["New absorption"]),
531
+ use_container_width=True)
532
+
533
+ nav_buttons()
534
+
535
+
536
+ # ---------------------------------------------------------------------------
537
+ def section_final_checks() -> None:
538
+ st.title("πŸ”Š Building Acoustics Analysis Tool")
539
+
540
+ with st.expander("App Information", expanded=False):
541
+ st.write("""
542
+ - This app is intended for educational purposes only and should not be used for professional purposes.
543
+ """)
544
+
545
+ st.header("🚦 Final Compliance Checks")
546
+ t_rt, t_bn, t_si = st.tabs(
547
+ ["Reverberation Time", "Background Noise", "Speech Intelligibility"])
548
+
549
+ combined = {
550
+ f: st.session_state.current_absorption.get(f, 0)
551
+ + st.session_state.new_absorption.get(f, 0)
552
+ for f in FREQUENCIES
553
+ }
554
+
555
+ # ── RT60 final check ───────────────────────────────────────────────────
556
+ with t_rt:
557
+ if st.session_state.room_volume == 0 or not combined:
558
+ st.warning("⚠️ Provide volume + materials, then run Acoustic Treatment.")
559
+ else:
560
+ new_rt = {f: calc_abs_area(st.session_state.room_volume, a)
561
+ for f, a in combined.items()}
562
+ st.markdown("New RT60 values after acoustic treatment")
563
+ st.dataframe(pd.DataFrame([new_rt], index=["New RT60"]),
564
+ use_container_width=True)
565
+
566
+ y_cur = ([float(st.session_state.df_current_rt.iloc[0][f])
567
+ for f in FREQUENCIES]
568
+ if st.session_state.df_current_rt is not None else [None]*6)
569
+
570
+ fig = plot_rt_band(
571
+ y_cur,
572
+ [st.session_state.rt_min]*6,
573
+ [st.session_state.rt_max]*6,
574
+ "Final RT60 vs Standard Range",
575
+ )
576
+ fig.add_trace(go.Scatter(
577
+ x=FREQUENCIES,
578
+ y=[new_rt[f] for f in FREQUENCIES],
579
+ mode="lines+markers",
580
+ name="New",
581
+ marker_color="#d62728",
582
+ ))
583
+ st.plotly_chart(fig, use_container_width=True)
584
+ st.session_state.fig_rt_final = fig
585
+
586
+ # ── Background noise final check ───────────────────────────────────────
587
+ with t_bn:
588
+ st.write("""When you apply acoustic treatment to a room, the noise reduction
589
+ resulting from increased sound absorption will deacrease background noise.""")
590
+ df = st.session_state.df_background_noise
591
+ if df.empty or not combined:
592
+ st.warning("⚠️ Provide background-noise data and run Acoustic Treatment.")
593
+ else:
594
+ before = sum(st.session_state.current_absorption.values())
595
+ after = sum(combined.values())
596
+ if before == 0:
597
+ st.error("Existing absorption sum is zero.")
598
+ else:
599
+ nr = 10 * np.log10(after / before)
600
+ st.metric("Noise Reduction", f"{nr:.2f} dB",
601
+ help="Noise reduction due to acoustic treatment" )
602
+ df_new = df.copy()
603
+ df_new["dBA"] = df_new["dBA"] - nr
604
+ fig = plot_bn_band(
605
+ df_new["Location"], df_new["dBA"],
606
+ st.session_state.bn_min, st.session_state.bn_max,
607
+ "Final Background Noise vs Standard Range",
608
+ )
609
+ st.plotly_chart(fig, use_container_width=True)
610
+ st.session_state.fig_bn_final = fig
611
+
612
+ # ── AI final check ─────────────────────────────────────────────────────-
613
+ with t_si:
614
+ st.write("""When you apply acoustic treatment to a room, the noise reduction
615
+ resulting from increased sound absorption will deacrease the sound pressure
616
+ levels used in calcuating AI""")
617
+ if st.session_state.df_spl is None or not combined:
618
+ st.warning("⚠️ Upload SPL data and run Acoustic Treatment first.")
619
+ else:
620
+ before = sum(st.session_state.current_absorption.values())
621
+ after = sum(combined.values())
622
+ nr_db = 10 * np.log10(after / before) if before else 0
623
+ df_new_spl = st.session_state.df_spl - nr_db
624
+ st.markdown("###### New sound pressure levels after acoustic treatment")
625
+ st.write("""For each location in the table below, plot the new sound pressure
626
+ levels on the dots graph, count dots above the line, and calculate AI below.""")
627
+ st.dataframe(df_new_spl, use_container_width=True)
628
+
629
+ st.markdown("Articulation Index (AI) calculation")
630
+ ai_rows = []
631
+ for loc in df_new_spl.index:
632
+ key = slugify(f"dots_final_{loc}")
633
+ default = st.session_state.dots_final_dict.get(loc, 0)
634
+ dots = st.number_input(
635
+ f"Dots above ({loc})", 0, TOTAL_DOTS,
636
+ step=1, value=default, key=key)
637
+ st.session_state.dots_final_dict[loc] = dots
638
+ ai, interp = articulation_index(dots) if dots else (None, "")
639
+ st.session_state.ai_final_dict[loc] = (ai, interp)
640
+ ai_rows.append({
641
+ "Location": loc,
642
+ "AI": f"{ai:.2f}" if ai is not None else "",
643
+ "Interpretation": interp,
644
+ })
645
+ st.dataframe(pd.DataFrame(ai_rows), use_container_width=True)
646
+
647
+ nav_buttons()
648
+
649
+
650
+ # ---------------------------------------------------------------------------
651
+ def section_faq() -> None:
652
+ st.title("πŸ”Š Building Acoustics Analysis Tool")
653
+
654
+ with st.expander("App Information", expanded=False):
655
+ st.write("""
656
+ - This app is intended for educational purposes only and should not be used for professional purposes.
657
+ """)
658
+
659
+ st.header("❓ FAQ / Help")
660
+ faq_content = """
661
+ ### Frequently Asked Questions
662
+ **Q1: What should I do if the data upload fails?**
663
+ Ensure your file is in the correct format (CSV or Excel). Check that the column headings are consistent with the expected format (e.g., `125`, `250`, `500`, `1000`, `2000`, `4000` or `125Hz`, `250Hz`, `500Hz`, `1KHz`, `2KHz`, `4KHz`). Remove any extra rows or columns that do not contain relevant data.
664
+ **Q2: How do I interpret the RT60 values?**
665
+ RT60 values represent the time it takes for the sound to decay by 60 dB in a room. Lower RT60 values indicate faster sound decay and are preferable for environments where speech intelligibility is important. Higher RT60 values might be suitable for spaces intended for musical performances.
666
+ **Q3: Why is my calculated RT60 not within the standard range?**
667
+ This may occur if the room's current materials are not adequately absorbing sound. You may need to introduce new materials with higher absorption coefficients or increase the surface area of existing materials.
668
+ **Q4: What should I do if the app does not accept my frequency columns?**
669
+ The app standardizes frequency columns to numerical values (e.g., `125`, `250`) regardless of their initial format (e.g., `125Hz`, `125 Hz`). Ensure that the frequency values in your uploaded file are correctly formatted and consistent.
670
+ **Q5: How can I improve speech intelligibility in my room?**
671
+ To improve speech intelligibility, aim for a lower RT60 across the relevant frequencies, particularly in the range of 500 Hz to 4000 Hz. This can be achieved by adding more sound-absorbing materials, such as acoustic panels or curtains.
672
+ **Q6: How can I save my analysis results?**
673
+ You can download the PDF report, which includes all the data and graphs from your analysis. Click the "Download PDF Report" button at the end of your analysis to save the report to your device.
674
+ ### Troubleshooting Tips
675
+ - **Data Upload Issues**: If you encounter issues uploading data, double-check the format and structure of your file. Ensure the first row contains column headings and the data is organized as per the examples provided.
676
+ - **Unexpected Results**: If your analysis results seem incorrect, verify the accuracy of the input data, including the room volume and material properties. Incorrect input data can lead to erroneous calculations.
677
+ - **App Performance**: If the app is running slowly, consider optimizing your data size and complexity. Large datasets or highly detailed input may impact performance.
678
+
679
+ """
680
+ st.markdown(faq_content)
681
+ nav_buttons()