Spaces:
Sleeping
Sleeping
Upload climate_data.py
Browse files- data/climate_data.py +162 -95
data/climate_data.py
CHANGED
@@ -40,7 +40,52 @@ class ClimateLocation:
|
|
40 |
summer_daily_range: float # Mean daily temperature range in summer (°C)
|
41 |
monthly_temps: Dict[str, float] # Average monthly temperatures (°C)
|
42 |
monthly_humidity: Dict[str, float] # Average monthly relative humidity (%)
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def to_dict(self) -> Dict[str, Any]:
|
45 |
"""Convert the climate location to a dictionary."""
|
46 |
return {
|
@@ -59,7 +104,9 @@ class ClimateLocation:
|
|
59 |
"summer_design_temp_wb": self.summer_design_temp_wb,
|
60 |
"summer_daily_range": self.summer_daily_range,
|
61 |
"monthly_temps": self.monthly_temps,
|
62 |
-
"monthly_humidity": self.monthly_humidity
|
|
|
|
|
63 |
}
|
64 |
|
65 |
class ClimateData:
|
@@ -106,7 +153,8 @@ class ClimateData:
|
|
106 |
"id", "country", "city", "latitude", "longitude", "elevation",
|
107 |
"climate_zone", "heating_degree_days", "cooling_degree_days",
|
108 |
"winter_design_temp", "summer_design_temp_db", "summer_design_temp_wb",
|
109 |
-
"summer_daily_range", "monthly_temps", "monthly_humidity"
|
|
|
110 |
]
|
111 |
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
112 |
|
@@ -128,6 +176,10 @@ class ClimateData:
|
|
128 |
return False
|
129 |
if data["summer_daily_range"] < 0:
|
130 |
return False
|
|
|
|
|
|
|
|
|
131 |
|
132 |
for month in month_names:
|
133 |
if month not in data["monthly_temps"] or month not in data["monthly_humidity"]:
|
@@ -159,7 +211,7 @@ class ClimateData:
|
|
159 |
return wet_bulb
|
160 |
|
161 |
def display_climate_input(self, session_state: Dict[str, Any]):
|
162 |
-
"""Display form for
|
163 |
st.title("Climate Data")
|
164 |
|
165 |
if not session_state.building_info.get("country") or not session_state.building_info.get("city"):
|
@@ -168,10 +220,94 @@ class ClimateData:
|
|
168 |
return
|
169 |
|
170 |
st.subheader(f"Location: {session_state.building_info['country']}, {session_state.building_info['city']}")
|
171 |
-
tab1, tab2 = st.tabs(["
|
172 |
|
173 |
-
#
|
174 |
with tab1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
with st.form("manual_climate_form"):
|
176 |
col1, col2 = st.columns(2)
|
177 |
with col1:
|
@@ -222,10 +358,7 @@ class ClimateData:
|
|
222 |
winter_design_temp = st.number_input(
|
223 |
"Winter Design Temp (99.6%) (°C)",
|
224 |
min_value=-50.0,
|
225 |
-
|
226 |
-
value=0.0,
|
227 |
-
step=0.5,
|
228 |
-
help="Enter the 99.6% winter design temperature in °C (extreme cold condition)"
|
229 |
)
|
230 |
summer_design_temp_db = st.number_input(
|
231 |
"Summer Design Temp DB (0.4%) (°C)",
|
@@ -250,6 +383,14 @@ class ClimateData:
|
|
250 |
step=0.5,
|
251 |
help="Enter the average daily temperature range in summer in °C"
|
252 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
# Monthly Data with clear titles (no help added here)
|
255 |
monthly_temps = {}
|
@@ -278,7 +419,13 @@ class ClimateData:
|
|
278 |
try:
|
279 |
# Generate ID internally using country and city from session_state
|
280 |
generated_id = f"{session_state.building_info['country'][:2].upper()}-{session_state.building_info['city'][:3].upper()}"
|
|
|
|
|
|
|
|
|
|
|
281 |
location = ClimateLocation(
|
|
|
282 |
id=generated_id,
|
283 |
country=session_state.building_info["country"],
|
284 |
state_province="N/A", # Default since input removed
|
@@ -289,7 +436,6 @@ class ClimateData:
|
|
289 |
climate_zone=climate_zone,
|
290 |
heating_degree_days=hdd,
|
291 |
cooling_degree_days=cdd,
|
292 |
-
winter_design_temp=winter_design_temp,
|
293 |
summer_design_temp_db=summer_design_temp_db,
|
294 |
summer_design_temp_wb=summer_design_temp_wb,
|
295 |
summer_daily_range=summer_daily_range,
|
@@ -308,89 +454,6 @@ class ClimateData:
|
|
308 |
except Exception as e:
|
309 |
st.error(f"Error saving climate data: {str(e)}. Please check inputs and try again.")
|
310 |
|
311 |
-
# EPW Upload Tab
|
312 |
-
with tab2:
|
313 |
-
uploaded_file = st.file_uploader("Upload EPW File", type=["epw"])
|
314 |
-
if uploaded_file:
|
315 |
-
try:
|
316 |
-
epw_content = uploaded_file.read().decode("utf-8")
|
317 |
-
epw_lines = epw_content.splitlines()
|
318 |
-
header = next(line for line in epw_lines if line.startswith("LOCATION"))
|
319 |
-
header_parts = header.split(",")
|
320 |
-
latitude = float(header_parts[6])
|
321 |
-
longitude = float(header_parts[7])
|
322 |
-
elevation = float(header_parts[8])
|
323 |
-
|
324 |
-
data_start_idx = next(i for i, line in enumerate(epw_lines) if line.startswith("DATA PERIODS")) + 1
|
325 |
-
epw_data = pd.read_csv(StringIO("\n".join(epw_lines[data_start_idx:])), header=None, dtype=str)
|
326 |
-
if len(epw_data) != 8760:
|
327 |
-
raise ValueError(f"EPW file has {len(epw_data)} records, expected 8760.")
|
328 |
-
|
329 |
-
for col in epw_data.columns:
|
330 |
-
epw_data[col] = pd.to_numeric(epw_data[col], errors='coerce')
|
331 |
-
|
332 |
-
months = epw_data[1].values # Month
|
333 |
-
dry_bulb = epw_data[6].values # Dry-bulb temperature (°C)
|
334 |
-
humidity = epw_data[8].values # Relative humidity (%)
|
335 |
-
pressure = epw_data[9].values # Atmospheric pressure (Pa)
|
336 |
-
|
337 |
-
wet_bulb = self.calculate_wet_bulb(dry_bulb, humidity)
|
338 |
-
|
339 |
-
if np.all(np.isnan(dry_bulb)) or np.all(np.isnan(humidity)) or np.all(np.isnan(wet_bulb)):
|
340 |
-
raise ValueError("Dry bulb, humidity, or calculated wet bulb data is entirely NaN.")
|
341 |
-
|
342 |
-
daily_temps = np.nanmean(dry_bulb.reshape(-1, 24), axis=1)
|
343 |
-
hdd = round(np.nansum(np.maximum(18 - daily_temps, 0)))
|
344 |
-
cdd = round(np.nansum(np.maximum(daily_temps - 18, 0)))
|
345 |
-
|
346 |
-
winter_design_temp = round(np.nanpercentile(dry_bulb, 0.4), 1)
|
347 |
-
summer_design_temp_db = round(np.nanpercentile(dry_bulb, 99.6), 1)
|
348 |
-
summer_design_temp_wb = round(np.nanpercentile(wet_bulb, 99.6), 1)
|
349 |
-
summer_mask = (months >= 6) & (months <= 8)
|
350 |
-
summer_temps = dry_bulb[summer_mask].reshape(-1, 24)
|
351 |
-
summer_daily_range = round(np.nanmean(np.nanmax(summer_temps, axis=1) - np.nanmin(summer_temps, axis=1)), 1)
|
352 |
-
|
353 |
-
monthly_temps = {}
|
354 |
-
monthly_humidity = {}
|
355 |
-
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
356 |
-
for i in range(1, 13):
|
357 |
-
month_mask = (months == i)
|
358 |
-
monthly_temps[month_names[i-1]] = round(np.nanmean(dry_bulb[month_mask]), 1)
|
359 |
-
monthly_humidity[month_names[i-1]] = round(np.nanmean(humidity[month_mask]), 1)
|
360 |
-
|
361 |
-
avg_humidity = np.nanmean(humidity)
|
362 |
-
climate_zone = self.assign_climate_zone(hdd, cdd, avg_humidity)
|
363 |
-
|
364 |
-
location = ClimateLocation(
|
365 |
-
id=f"{session_state.building_info['country'][:2].upper()}-{session_state.building_info['city'][:3].upper()}",
|
366 |
-
country=session_state.building_info["country"],
|
367 |
-
state_province="N/A",
|
368 |
-
city=session_state.building_info["city"],
|
369 |
-
latitude=latitude,
|
370 |
-
longitude=longitude,
|
371 |
-
elevation=elevation,
|
372 |
-
climate_zone=climate_zone,
|
373 |
-
heating_degree_days=hdd,
|
374 |
-
cooling_degree_days=cdd,
|
375 |
-
winter_design_temp=winter_design_temp,
|
376 |
-
summer_design_temp_db=summer_design_temp_db,
|
377 |
-
summer_design_temp_wb=summer_design_temp_wb,
|
378 |
-
summer_daily_range=summer_daily_range,
|
379 |
-
monthly_temps=monthly_temps,
|
380 |
-
monthly_humidity=monthly_humidity
|
381 |
-
)
|
382 |
-
self.add_location(location)
|
383 |
-
climate_data_dict = location.to_dict()
|
384 |
-
if not self.validate_climate_data(climate_data_dict):
|
385 |
-
raise ValueError("Invalid climate data extracted from EPW file.")
|
386 |
-
session_state["climate_data"] = climate_data_dict # Save to session state
|
387 |
-
st.success("Climate data extracted from EPW file with calculated Wet Bulb Temperature!")
|
388 |
-
st.write(f"Debug: Saved climate data for {location.city} (ID: {location.id}): {climate_data_dict}") # Debug
|
389 |
-
self.display_design_conditions(location)
|
390 |
-
self.visualize_data(location, epw_data=epw_data)
|
391 |
-
except Exception as e:
|
392 |
-
st.error(f"Error processing EPW file: {str(e)}. Ensure it has 8760 hourly records and correct format.")
|
393 |
-
|
394 |
col1, col2 = st.columns(2)
|
395 |
with col1:
|
396 |
st.button("Back to Building Information", on_click=lambda: setattr(session_state, "page", "Building Information"))
|
@@ -420,7 +483,9 @@ class ClimateData:
|
|
420 |
"Winter Design Temperature (99.6%)",
|
421 |
"Summer Design Dry-Bulb Temp (0.4%)",
|
422 |
"Summer Design Wet-Bulb Temp (0.4%)",
|
423 |
-
"Summer Daily Temperature Range"
|
|
|
|
|
424 |
],
|
425 |
"Value": [
|
426 |
f"{location.latitude}°",
|
@@ -432,7 +497,9 @@ class ClimateData:
|
|
432 |
f"{location.winter_design_temp} °C",
|
433 |
f"{location.summer_design_temp_db} °C",
|
434 |
f"{location.summer_design_temp_wb} °C",
|
435 |
-
f"{location.summer_daily_range} °C"
|
|
|
|
|
436 |
]
|
437 |
})
|
438 |
|
|
|
40 |
summer_daily_range: float # Mean daily temperature range in summer (°C)
|
41 |
monthly_temps: Dict[str, float] # Average monthly temperatures (°C)
|
42 |
monthly_humidity: Dict[str, float] # Average monthly relative humidity (%)
|
43 |
+
wind_speed: float # Mean wind speed (m/s)
|
44 |
+
pressure: float # Atmospheric pressure (Pa)
|
45 |
|
46 |
+
def __init__(self, epw_file=None, manual_data=None, **kwargs):
|
47 |
+
"""Initialize ClimateLocation with EPW file or manual data."""
|
48 |
+
if epw_file:
|
49 |
+
# Extract from EPW (epw_data[6] for dry-bulb temperature)
|
50 |
+
temps = np.array(epw_file[6], dtype=float)
|
51 |
+
self.winter_design_temp = np.percentile(temps[~np.isnan(temps)], 0.4) # 99.6% percentile
|
52 |
+
self.wind_speed = round(np.nanmean(epw_file[13]), 1) # m/s
|
53 |
+
self.pressure = self.adjust_pressure_for_altitude(kwargs.get("elevation", 0.0))
|
54 |
+
# Populate other fields from EPW processing
|
55 |
+
self.id = kwargs.get("id")
|
56 |
+
self.country = kwargs.get("country")
|
57 |
+
self.state_province = kwargs.get("state_province")
|
58 |
+
self.city = kwargs.get("city")
|
59 |
+
self.latitude = kwargs.get("latitude")
|
60 |
+
self.longitude = kwargs.get("longitude")
|
61 |
+
self.elevation = kwargs.get("elevation")
|
62 |
+
self.climate_zone = kwargs.get("climate_zone")
|
63 |
+
self.heating_degree_days = kwargs.get("heating_degree_days")
|
64 |
+
self.cooling_degree_days = kwargs.get("cooling_degree_days")
|
65 |
+
self.summer_design_temp_db = kwargs.get("summer_design_temp_db")
|
66 |
+
self.summer_design_temp_wb = kwargs.get("summer_design_temp_wb")
|
67 |
+
self.summer_daily_range = kwargs.get("summer_daily_range")
|
68 |
+
self.monthly_temps = kwargs.get("monthly_temps")
|
69 |
+
self.monthly_humidity = kwargs.get("monthly_humidity")
|
70 |
+
elif manual_data:
|
71 |
+
self.winter_design_temp = manual_data.get("winter_temp", -10.0)
|
72 |
+
self.wind_speed = manual_data.get("wind_speed", 5.0)
|
73 |
+
self.pressure = manual_data.get("pressure", 101325.0)
|
74 |
+
# Populate other fields from manual data
|
75 |
+
for key, value in kwargs.items():
|
76 |
+
setattr(self, key, value)
|
77 |
+
else:
|
78 |
+
# Default initialization with kwargs
|
79 |
+
for key, value in kwargs.items():
|
80 |
+
setattr(self, key, value)
|
81 |
+
self.winter_design_temp = kwargs.get("winter_design_temp", -10.0)
|
82 |
+
self.wind_speed = kwargs.get("wind_speed", 5.0)
|
83 |
+
self.pressure = self.adjust_pressure_for_altitude(kwargs.get("elevation", 0.0))
|
84 |
+
|
85 |
+
def adjust_pressure_for_altitude(self, elevation: float) -> float:
|
86 |
+
"""Calculate atmospheric pressure based on elevation."""
|
87 |
+
return 101325 * (1 - 2.25577e-5 * elevation)**5.25588
|
88 |
+
|
89 |
def to_dict(self) -> Dict[str, Any]:
|
90 |
"""Convert the climate location to a dictionary."""
|
91 |
return {
|
|
|
104 |
"summer_design_temp_wb": self.summer_design_temp_wb,
|
105 |
"summer_daily_range": self.summer_daily_range,
|
106 |
"monthly_temps": self.monthly_temps,
|
107 |
+
"monthly_humidity": self.monthly_humidity,
|
108 |
+
"wind_speed": self.wind_speed,
|
109 |
+
"pressure": self.pressure
|
110 |
}
|
111 |
|
112 |
class ClimateData:
|
|
|
153 |
"id", "country", "city", "latitude", "longitude", "elevation",
|
154 |
"climate_zone", "heating_degree_days", "cooling_degree_days",
|
155 |
"winter_design_temp", "summer_design_temp_db", "summer_design_temp_wb",
|
156 |
+
"summer_daily_range", "monthly_temps", "monthly_humidity",
|
157 |
+
"wind_speed", "pressure"
|
158 |
]
|
159 |
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
160 |
|
|
|
176 |
return False
|
177 |
if data["summer_daily_range"] < 0:
|
178 |
return False
|
179 |
+
if not (0 <= data["wind_speed"] <= 20):
|
180 |
+
return False
|
181 |
+
if not (50000 <= data["pressure"] <= 120000):
|
182 |
+
return False
|
183 |
|
184 |
for month in month_names:
|
185 |
if month not in data["monthly_temps"] or month not in data["monthly_humidity"]:
|
|
|
211 |
return wet_bulb
|
212 |
|
213 |
def display_climate_input(self, session_state: Dict[str, Any]):
|
214 |
+
"""Display form for EPW upload or manual input in Streamlit."""
|
215 |
st.title("Climate Data")
|
216 |
|
217 |
if not session_state.building_info.get("country") or not session_state.building_info.get("city"):
|
|
|
220 |
return
|
221 |
|
222 |
st.subheader(f"Location: {session_state.building_info['country']}, {session_state.building_info['city']}")
|
223 |
+
tab1, tab2 = st.tabs(["Upload EPW File", "Manual Input"])
|
224 |
|
225 |
+
# EPW Upload Tab
|
226 |
with tab1:
|
227 |
+
uploaded_file = st.file_uploader("Upload EPW File", type=["epw"])
|
228 |
+
if uploaded_file:
|
229 |
+
try:
|
230 |
+
epw_content = uploaded_file.read().decode("utf-8")
|
231 |
+
epw_lines = epw_content.splitlines()
|
232 |
+
header = next(line for line in epw_lines if line.startswith("LOCATION"))
|
233 |
+
header_parts = header.split(",")
|
234 |
+
latitude = float(header_parts[6])
|
235 |
+
longitude = float(header_parts[7])
|
236 |
+
elevation = float(header_parts[8])
|
237 |
+
|
238 |
+
data_start_idx = next(i for i, line in enumerate(epw_lines) if line.startswith("DATA PERIODS")) + 1
|
239 |
+
epw_data = pd.read_csv(StringIO("\n".join(epw_lines[data_start_idx:])), header=None, dtype=str)
|
240 |
+
if len(epw_data) != 8760:
|
241 |
+
raise ValueError(f"EPW file has {len(epw_data)} records, expected 8760.")
|
242 |
+
|
243 |
+
for col in epw_data.columns:
|
244 |
+
epw_data[col] = pd.to_numeric(epw_data[col], errors='coerce')
|
245 |
+
|
246 |
+
months = epw_data[1].values # Month
|
247 |
+
dry_bulb = epw_data[6].values # Dry-bulb temperature (°C)
|
248 |
+
humidity = epw_data[8].values # Relative humidity (%)
|
249 |
+
pressure = epw_data[9].values # Atmospheric pressure (Pa)
|
250 |
+
wind_speed = epw_data[13].values # Wind speed (m/s)
|
251 |
+
|
252 |
+
wet_bulb = self.calculate_wet_bulb(dry_bulb, humidity)
|
253 |
+
|
254 |
+
if np.all(np.isnan(dry_bulb)) or np.all(np.isnan(humidity)) or np.all(np.isnan(wet_bulb)):
|
255 |
+
raise ValueError("Dry bulb, humidity, or calculated wet bulb data is entirely NaN.")
|
256 |
+
|
257 |
+
daily_temps = np.nanmean(dry_bulb.reshape(-1, 24), axis=1)
|
258 |
+
hdd = round(np.nansum(np.maximum(18 - daily_temps, 0)))
|
259 |
+
cdd = round(np.nansum(np.maximum(daily_temps - 18, 0)))
|
260 |
+
|
261 |
+
winter_design_temp = round(np.nanpercentile(dry_bulb, 0.4), 1)
|
262 |
+
summer_design_temp_db = round(np.nanpercentile(dry_bulb, 99.6), 1)
|
263 |
+
summer_design_temp_wb = round(np.nanpercentile(wet_bulb, 99.6), 1)
|
264 |
+
summer_mask = (months >= 6) & (months <= 8)
|
265 |
+
summer_temps = dry_bulb[summer_mask].reshape(-1, 24)
|
266 |
+
summer_daily_range = round(np.nanmean(np.nanmax(summer_temps, axis=1) - np.nanmin(summer_temps, axis=1)), 1)
|
267 |
+
|
268 |
+
monthly_temps = {}
|
269 |
+
monthly_humidity = {}
|
270 |
+
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
271 |
+
for i in range(1, 13):
|
272 |
+
month_mask = (months == i)
|
273 |
+
monthly_temps[month_names[i-1]] = round(np.nanmean(dry_bulb[month_mask]), 1)
|
274 |
+
monthly_humidity[month_names[i-1]] = round(np.nanmean(humidity[month_mask]), 1)
|
275 |
+
|
276 |
+
avg_humidity = np.nanmean(humidity)
|
277 |
+
climate_zone = self.assign_climate_zone(hdd, cdd, avg_humidity)
|
278 |
+
|
279 |
+
location = ClimateLocation(
|
280 |
+
epw_file=epw_data,
|
281 |
+
id=f"{session_state.building_info['country'][:2].upper()}-{session_state.building_info['city'][:3].upper()}",
|
282 |
+
country=session_state.building_info["country"],
|
283 |
+
state_province="N/A",
|
284 |
+
city=session_state.building_info["city"],
|
285 |
+
latitude=latitude,
|
286 |
+
longitude=longitude,
|
287 |
+
elevation=elevation,
|
288 |
+
climate_zone=climate_zone,
|
289 |
+
heating_degree_days=hdd,
|
290 |
+
cooling_degree_days=cdd,
|
291 |
+
summer_design_temp_db=summer_design_temp_db,
|
292 |
+
summer_design_temp_wb=summer_design_temp_wb,
|
293 |
+
summer_daily_range=summer_daily_range,
|
294 |
+
monthly_temps=monthly_temps,
|
295 |
+
monthly_humidity=monthly_humidity
|
296 |
+
)
|
297 |
+
self.add_location(location)
|
298 |
+
climate_data_dict = location.to_dict()
|
299 |
+
if not self.validate_climate_data(climate_data_dict):
|
300 |
+
raise ValueError("Invalid climate data extracted from EPW file.")
|
301 |
+
session_state["climate_data"] = climate_data_dict # Save to session state
|
302 |
+
st.success("Climate data extracted from EPW file with calculated Wet Bulb Temperature!")
|
303 |
+
st.write(f"Debug: Saved climate data for {location.city} (ID: {location.id}): {climate_data_dict}") # Debug
|
304 |
+
self.display_design_conditions(location)
|
305 |
+
self.visualize_data(location, epw_data=epw_data)
|
306 |
+
except Exception as e:
|
307 |
+
st.error(f"Error processing EPW file: {str(e)}. Ensure it has 8760 hourly records and correct format.")
|
308 |
+
|
309 |
+
# Manual Input Tab
|
310 |
+
with tab2:
|
311 |
with st.form("manual_climate_form"):
|
312 |
col1, col2 = st.columns(2)
|
313 |
with col1:
|
|
|
358 |
winter_design_temp = st.number_input(
|
359 |
"Winter Design Temp (99.6%) (°C)",
|
360 |
min_value=-50.0,
|
361 |
+
max
|
|
|
|
|
|
|
362 |
)
|
363 |
summer_design_temp_db = st.number_input(
|
364 |
"Summer Design Temp DB (0.4%) (°C)",
|
|
|
383 |
step=0.5,
|
384 |
help="Enter the average daily temperature range in summer in °C"
|
385 |
)
|
386 |
+
wind_speed = st.number_input(
|
387 |
+
"Wind Speed (m/s)",
|
388 |
+
min_value=0.0,
|
389 |
+
max_value=20.0,
|
390 |
+
value=5.0,
|
391 |
+
step=0.1,
|
392 |
+
help="Enter the average wind speed in meters per second"
|
393 |
+
)
|
394 |
|
395 |
# Monthly Data with clear titles (no help added here)
|
396 |
monthly_temps = {}
|
|
|
419 |
try:
|
420 |
# Generate ID internally using country and city from session_state
|
421 |
generated_id = f"{session_state.building_info['country'][:2].upper()}-{session_state.building_info['city'][:3].upper()}"
|
422 |
+
manual_data = {
|
423 |
+
"winter_temp": winter_design_temp,
|
424 |
+
"wind_speed": wind_speed,
|
425 |
+
"pressure": ClimateLocation.adjust_pressure_for_altitude(None, elevation)
|
426 |
+
}
|
427 |
location = ClimateLocation(
|
428 |
+
manual_data=manual_data,
|
429 |
id=generated_id,
|
430 |
country=session_state.building_info["country"],
|
431 |
state_province="N/A", # Default since input removed
|
|
|
436 |
climate_zone=climate_zone,
|
437 |
heating_degree_days=hdd,
|
438 |
cooling_degree_days=cdd,
|
|
|
439 |
summer_design_temp_db=summer_design_temp_db,
|
440 |
summer_design_temp_wb=summer_design_temp_wb,
|
441 |
summer_daily_range=summer_daily_range,
|
|
|
454 |
except Exception as e:
|
455 |
st.error(f"Error saving climate data: {str(e)}. Please check inputs and try again.")
|
456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
col1, col2 = st.columns(2)
|
458 |
with col1:
|
459 |
st.button("Back to Building Information", on_click=lambda: setattr(session_state, "page", "Building Information"))
|
|
|
483 |
"Winter Design Temperature (99.6%)",
|
484 |
"Summer Design Dry-Bulb Temp (0.4%)",
|
485 |
"Summer Design Wet-Bulb Temp (0.4%)",
|
486 |
+
"Summer Daily Temperature Range",
|
487 |
+
"Wind Speed (m/s)",
|
488 |
+
"Atmospheric Pressure (Pa)"
|
489 |
],
|
490 |
"Value": [
|
491 |
f"{location.latitude}°",
|
|
|
497 |
f"{location.winter_design_temp} °C",
|
498 |
f"{location.summer_design_temp_db} °C",
|
499 |
f"{location.summer_design_temp_wb} °C",
|
500 |
+
f"{location.summer_daily_range} °C",
|
501 |
+
f"{location.wind_speed} m/s",
|
502 |
+
f"{location.pressure} Pa"
|
503 |
]
|
504 |
})
|
505 |
|