|
|
|
|
|
|
|
import gradio as gr |
|
import os |
|
import cv2 |
|
|
|
def inference(file, af, mask): |
|
im = cv2.imread(file, cv2.IMREAD_COLOR) |
|
cv2.imwrite(os.path.join("input.png"), im) |
|
|
|
from rembg import remove |
|
|
|
input_path = 'input.png' |
|
output_path = 'output.png' |
|
|
|
with open(input_path, 'rb') as i: |
|
with open(output_path, 'wb') as o: |
|
input = i.read() |
|
output = remove(input, alpha_matting_erode_size = af, only_mask = (True if mask == "Mask only" else False)) |
|
o.write(output) |
|
return os.path.join("output.png") |
|
|
|
title = "RemBG" |
|
description = "Gradio demo for RemBG. To use it, simply upload your image and wait. Read more at the link below." |
|
article = "<p style='text-align: center;'><a href='https://github.com/danielgatis/rembg' target='_blank'>Github Repo</a></p>" |
|
|
|
|
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type="filepath", label="Input"), gr.Slider(10, 25, value=10, label="Alpha matting"), gr.Radio(choices = ["Alpha matting", "Mask only"], value = "Alpha matting")], |
|
gr.outputs.Image(type="file", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[['lion.png']], |
|
enable_queue=True |
|
).launch() |