|
|
|
|
|
|
|
import gradio as gr |
|
import os |
|
import cv2 |
|
|
|
def inference(file, af, mask, model): |
|
im = cv2.imread(file, cv2.IMREAD_COLOR) |
|
cv2.imwrite(os.path.join("input.png"), im) |
|
|
|
from rembg import remove |
|
from rembg.session_base import BaseSession |
|
from rembg.session_factory import new_session |
|
|
|
input_path = 'input.png' |
|
output_path = 'output.png' |
|
|
|
with open(input_path, 'rb') as i: |
|
with open(output_path, 'wb') as o: |
|
input = i.read() |
|
sessions: dict[str, BaseSession] = {} |
|
output = remove( |
|
input, |
|
session=sessions.setdefault( |
|
model, new_session(model) |
|
), |
|
alpha_matting_erode_size = af, |
|
only_mask = (True if mask == "Mask only" else False) |
|
) |
|
o.write(output) |
|
return os.path.join("output.png") |
|
|
|
title = "RemBG" |
|
description = "Gradio demo for RemBG. To use it, simply upload your image and wait. Read more at the link below." |
|
article = "<p style='text-align: center;'><a href='https://github.com/danielgatis/rembg' target='_blank'>Github Repo</a></p>" |
|
|
|
|
|
gr.Interface( |
|
inference, |
|
[ |
|
gr.inputs.Image(type="filepath", label="Input"), |
|
gr.inputs.Slider(10, 25, default=10, label="Alpha matting"), |
|
gr.inputs.Radio( |
|
[ |
|
"Default", |
|
"Mask only" |
|
], |
|
type="value", |
|
default="Default", |
|
label="Choices" |
|
), |
|
gr.inputs.Dropdown([ |
|
"u2net", |
|
"u2netp", |
|
"u2net_human_seg", |
|
"u2net_cloth_seg", |
|
"silueta" |
|
], |
|
type="value", |
|
default="u2net", |
|
label="Models" |
|
), |
|
], |
|
gr.outputs.Image(type="file", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[["lion.png", 10, "Default", "u2net"], ["girl.jpg", 10, "Default", "u2net"]], |
|
enable_queue=True |
|
).launch() |