Spaces:
Runtime error
Runtime error
File size: 1,075 Bytes
7cb60ed 3b212eb 7cb60ed 3b212eb 7cb60ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
import dat
# Load the model and tokenizer
model_name = "LocalDoc/mbart_large_qa_azerbaijan"
tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ")
model = MBartForConditionalGeneration.from_pretrained(model_name)
def answer_question(context, question):
# Prepare input text
input_text = f"context: {context} question: {question}"
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True, padding="max_length")
# Generate answer
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=128,
num_beams=5,
early_stopping=True
)
# Decode the answer
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# Example usage
context = dat.data
question = "Vətəndaşın icazəsi olmadan videosunu çəkmək qadağandır?"
answer = answer_question(context, question)
print(answer)
|