Spaces:
Runtime error
Runtime error
from transformers import BertModel, BertTokenizer, TrainingArguments, Trainer | |
from datasets import Dataset | |
# Prepare the dataset (simplified) | |
def prepare_text_dataset(data, chunk_size): | |
# Split the text into smaller chunks (consider logical divisions of the Constitution) | |
chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)] | |
# Convert chunks to dictionaries with a single feature "text" | |
formatted_data = [{"text": chunk} for chunk in chunks] | |
# Create the dataset from the list of dictionaries | |
formatted_dataset = Dataset.from_list(formatted_data) | |
# Tokenize the text using the MBart tokenizer | |
formatted_dataset = formatted_dataset.map( | |
lambda x: tokenizer(x["text"], truncation=True, padding="max_length"), | |
batched=True | |
) | |
# Set the format of the dataset to "torch" for compatibility with the model | |
formatted_dataset.set_format("torch") | |
# Print a message indicating preparation completion (optional) | |
print('Prep done') | |
return formatted_dataset | |
def init(): | |
# Load the model and tokenizer | |
model_name = "language-ml-lab/AzerBert" # Replace with your model name if different | |
tokenizer = BertTokenizer.from_pretrained(model_name) | |
model = BertModel.from_pretrained(model_name) | |
chunk_size = 512 | |
# Load the plain text (replace with your actual loading logic) | |
with open("constitution.txt", "r", encoding="utf-8") as f: | |
constitution_text = f.read() | |
# Prepare the dataset | |
train_dataset = prepare_text_dataset(constitution_text, chunk_size) | |
# Define training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", # Adjust output directory | |
overwrite_output_dir=True, | |
num_train_epochs=3, # Adjust training epochs | |
per_device_train_batch_size=1, # Adjust batch size based on your GPU memory | |
save_steps=500, | |
save_total_limit=2, | |
) | |
# Create the Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
) | |
# Start training | |
trainer.train() | |
# Save the fine-tuned model | |
model.save_pretrained("./fine-tuned_model") | |
tokenizer.save_pretrained("./fine-tuned_model") | |