Spaces:
Runtime error
Runtime error
Commit
·
a592fa2
1
Parent(s):
6d9e11a
more Storage
Browse files
app.py
CHANGED
@@ -1,21 +1,49 @@
|
|
1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
2 |
import dat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load the model and tokenizer
|
5 |
model_name = "LocalDoc/mbart_large_qa_azerbaijan"
|
6 |
tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ")
|
7 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
8 |
|
|
|
|
|
|
|
|
|
9 |
def answer_question(context, question):
|
10 |
# Prepare input text
|
11 |
input_text = f"context: {context} question: {question}"
|
12 |
-
inputs = tokenizer(input_text, return_tensors="pt", max_length=
|
13 |
|
14 |
# Generate answer
|
15 |
outputs = model.generate(
|
16 |
input_ids=inputs["input_ids"],
|
17 |
attention_mask=inputs["attention_mask"],
|
18 |
-
max_length=
|
19 |
num_beams=5,
|
20 |
early_stopping=True
|
21 |
)
|
|
|
1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
2 |
import dat
|
3 |
+
import os
|
4 |
+
import platform
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
def setvar():
|
9 |
+
if platform.system() == "Windows":
|
10 |
+
print("Windows detected. Assigning cache directory to Transformers in AppData \ Local.")
|
11 |
+
transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
|
12 |
+
if not os.path.exists(transformers_cache_directory):
|
13 |
+
try:
|
14 |
+
os.mkdir(transformers_cache_directory)
|
15 |
+
print(f"First launch. Directory '{transformers_cache_directory}' created successfully.")
|
16 |
+
except OSError as e:
|
17 |
+
print(f"Error creating directory '{transformers_cache_directory}': {e}")
|
18 |
+
else:
|
19 |
+
print(f"Directory '{transformers_cache_directory}' already exists.")
|
20 |
+
os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
|
21 |
+
print("Environment variable assigned.")
|
22 |
+
del transformers_cache_directory
|
23 |
+
|
24 |
+
else:
|
25 |
+
print("Windows not detected. Assignment of Transformers cache directory not necessary.")
|
26 |
+
|
27 |
|
28 |
# Load the model and tokenizer
|
29 |
model_name = "LocalDoc/mbart_large_qa_azerbaijan"
|
30 |
tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ")
|
31 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
32 |
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
def answer_question(context, question):
|
38 |
# Prepare input text
|
39 |
input_text = f"context: {context} question: {question}"
|
40 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=5120000, truncation=False, padding="max_length")
|
41 |
|
42 |
# Generate answer
|
43 |
outputs = model.generate(
|
44 |
input_ids=inputs["input_ids"],
|
45 |
attention_mask=inputs["attention_mask"],
|
46 |
+
max_length=5120000,
|
47 |
num_beams=5,
|
48 |
early_stopping=True
|
49 |
)
|