BusinessDev commited on
Commit
a592fa2
·
1 Parent(s): 6d9e11a

more Storage

Browse files
Files changed (1) hide show
  1. app.py +30 -2
app.py CHANGED
@@ -1,21 +1,49 @@
1
  from transformers import MBartForConditionalGeneration, MBart50Tokenizer
2
  import dat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  # Load the model and tokenizer
5
  model_name = "LocalDoc/mbart_large_qa_azerbaijan"
6
  tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ")
7
  model = MBartForConditionalGeneration.from_pretrained(model_name)
8
 
 
 
 
 
9
  def answer_question(context, question):
10
  # Prepare input text
11
  input_text = f"context: {context} question: {question}"
12
- inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=False, padding="max_length")
13
 
14
  # Generate answer
15
  outputs = model.generate(
16
  input_ids=inputs["input_ids"],
17
  attention_mask=inputs["attention_mask"],
18
- max_length=128,
19
  num_beams=5,
20
  early_stopping=True
21
  )
 
1
  from transformers import MBartForConditionalGeneration, MBart50Tokenizer
2
  import dat
3
+ import os
4
+ import platform
5
+
6
+
7
+
8
+ def setvar():
9
+ if platform.system() == "Windows":
10
+ print("Windows detected. Assigning cache directory to Transformers in AppData \ Local.")
11
+ transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
12
+ if not os.path.exists(transformers_cache_directory):
13
+ try:
14
+ os.mkdir(transformers_cache_directory)
15
+ print(f"First launch. Directory '{transformers_cache_directory}' created successfully.")
16
+ except OSError as e:
17
+ print(f"Error creating directory '{transformers_cache_directory}': {e}")
18
+ else:
19
+ print(f"Directory '{transformers_cache_directory}' already exists.")
20
+ os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
21
+ print("Environment variable assigned.")
22
+ del transformers_cache_directory
23
+
24
+ else:
25
+ print("Windows not detected. Assignment of Transformers cache directory not necessary.")
26
+
27
 
28
  # Load the model and tokenizer
29
  model_name = "LocalDoc/mbart_large_qa_azerbaijan"
30
  tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ")
31
  model = MBartForConditionalGeneration.from_pretrained(model_name)
32
 
33
+
34
+
35
+
36
+
37
  def answer_question(context, question):
38
  # Prepare input text
39
  input_text = f"context: {context} question: {question}"
40
+ inputs = tokenizer(input_text, return_tensors="pt", max_length=5120000, truncation=False, padding="max_length")
41
 
42
  # Generate answer
43
  outputs = model.generate(
44
  input_ids=inputs["input_ids"],
45
  attention_mask=inputs["attention_mask"],
46
+ max_length=5120000,
47
  num_beams=5,
48
  early_stopping=True
49
  )