BusinessDev commited on
Commit
b3e3f8a
1 Parent(s): 5d11984
Files changed (1) hide show
  1. app.py +8 -29
app.py CHANGED
@@ -1,29 +1,6 @@
1
  from transformers import MBartForConditionalGeneration, MBart50Tokenizer
2
  import dat
3
- import os
4
- import platform
5
-
6
-
7
-
8
- def setvar():
9
- if platform.system() == "Windows":
10
- print("Windows detected. Assigning cache directory to Transformers in AppData \ Local.")
11
- transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
12
- if not os.path.exists(transformers_cache_directory):
13
- try:
14
- os.mkdir(transformers_cache_directory)
15
- print(f"First launch. Directory '{transformers_cache_directory}' created successfully.")
16
- except OSError as e:
17
- print(f"Error creating directory '{transformers_cache_directory}': {e}")
18
- else:
19
- print(f"Directory '{transformers_cache_directory}' already exists.")
20
- os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
21
- print("Environment variable assigned.")
22
- del transformers_cache_directory
23
-
24
- else:
25
- print("Windows not detected. Assignment of Transformers cache directory not necessary.")
26
-
27
 
28
  # Load the model and tokenizer
29
  model_name = "LocalDoc/mbart_large_qa_azerbaijan"
@@ -52,9 +29,11 @@ def answer_question(context, question):
52
  answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
53
  return answer
54
 
55
- # Example usage
56
- context = dat.data
57
- question = "Vətəndaşın icazəsi olmadan videosunu çəkmək qadağandır?"
 
 
 
58
 
59
- answer = answer_question(context, question)
60
- print(answer)
 
1
  from transformers import MBartForConditionalGeneration, MBart50Tokenizer
2
  import dat
3
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  # Load the model and tokenizer
6
  model_name = "LocalDoc/mbart_large_qa_azerbaijan"
 
29
  answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
30
  return answer
31
 
32
+ demo = gr.Interface(
33
+ fn = answer_question,
34
+ inputs = ['context', 'question'],
35
+ outputs = ['text']
36
+ )
37
+
38
 
39
+ demo.launch()