BusinessDev commited on
Commit
f2eeb87
·
verified ·
1 Parent(s): c0c8633

Update train.py

Browse files
Files changed (1) hide show
  1. train.py +62 -0
train.py CHANGED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import MBartForSequenceClassification, MBart50Tokenizer, TrainingArguments, Trainer
2
+ from datasets import Dataset
3
+
4
+
5
+ # Load the model and tokenizer
6
+ model_name = "LocalDoc/mbart_large_qa_azerbaijan" # Replace with your model name if different
7
+ tokenizer = MBart50Tokenizer.from_pretrained(model_name)
8
+ model = MBartForSequenceClassification.from_pretrained(model_name)
9
+ chunk_size = 512
10
+
11
+ # Prepare the dataset (simplified)
12
+ def prepare_text_dataset(data):
13
+ # Split the text into smaller chunks (consider logical divisions of the Constitution)
14
+ chunks = [data[i:i+chunk_size] for i in range(0, len(data), chunk_size)]
15
+ # Convert chunks to dictionaries with a single feature "text"
16
+ formatted_data = [{"text": chunk} for chunk in chunks]
17
+ # Create the dataset from the list of dictionaries
18
+ formatted_dataset = Dataset.from_list(formatted_data)
19
+ # Tokenize the text using the MBart tokenizer
20
+ formatted_dataset = formatted_dataset.map(
21
+ lambda x: tokenizer(x["text"], truncation=True, padding="max_length"),
22
+ batched=True
23
+ )
24
+
25
+ # Set the format of the dataset to "torch" for compatibility with the model
26
+ formatted_dataset.set_format("torch")
27
+ # Print a message indicating preparation completion (optional)
28
+ print('Prep done')
29
+
30
+ return formatted_dataset
31
+
32
+
33
+ # Load the plain text (replace with your actual loading logic)
34
+ with open("constitution.txt", "r", encoding="utf-8") as f:
35
+ constitution_text = f.read()
36
+
37
+ # Prepare the dataset
38
+ train_dataset = prepare_text_dataset(constitution_text)
39
+
40
+ # Define training arguments
41
+ training_args = TrainingArguments(
42
+ output_dir="./results", # Adjust output directory
43
+ overwrite_output_dir=True,
44
+ num_train_epochs=3, # Adjust training epochs
45
+ per_device_train_batch_size=1, # Adjust batch size based on your GPU memory
46
+ save_steps=500,
47
+ save_total_limit=2,
48
+ )
49
+
50
+ # Create the Trainer
51
+ trainer = Trainer(
52
+ model=model,
53
+ args=training_args,
54
+ train_dataset=train_dataset,
55
+ )
56
+
57
+ # Start training
58
+ trainer.train()
59
+
60
+ # Save the fine-tuned model
61
+ model.save_pretrained("./fine-tuned_model")
62
+ tokenizer.save_pretrained("./fine-tuned_model")